Faculty Opinions recommendation of Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress.

Author(s):  
Ramón Serrano
2018 ◽  
Vol 45 (4) ◽  
pp. 428 ◽  
Author(s):  
Małgorzata Janicka ◽  
Małgorzata Reda ◽  
Katarzyna Czyżewska ◽  
Katarzyna Kabała

In the present study we demonstrate that the signalling molecules NO, H2O2 and H2S are important for understanding the mechanisms of modification of plasma membrane H+-ATPase (EC 3.6.3.14) activity in conditions of both salt (50 mM NaCl) and low temperature (10°C, LT) stress. Plants were subjected to stress conditions for 1 or 6 days. After 3 days of exposure to stress some of the plants were transferred to control conditions for another 3 days: post-stressed plants (3 + 3). We measured the endogenous levels of signalling molecules in stressed plants. To determine the physiological significance of NO, H2O2 and H2S induced activity of plasma membrane H+-ATPase (PM H+-ATPase) in salt and LT stresses, we investigated the activity of the plasma membrane proton pump in stress conditions, and plants were additionally supplemented with PTIO (a scavenger of NO), ascorbic acid (a scavenger of H2O2) or hypotaurine (a scavenger of H2S). H2S contributed to increased activity of PM H+-ATPase in short-term salt stress (1 day) and in low temperature treated plants (both 6 days and post-stressed plants), by stimulation of expression of several genes encoding isoforms of the plasma membrane proton pump (CsHA2, CsH4, CsH8, CsH9 and CsHA10). In contrast, NO and H2O2 play a minor role in the regulation of ATPase activity at the genetic level, because they significantly increased the expression of only one isoform, CsHA1, the expression level of which was very low in the tissues of the control plants, and additionally they slightly increased the expression of the gene encoding the isoform CsHA2. However, NO plays an important role in stimulation of the plasma membrane proton pumps under salt stress and low temperature. NO participates in post-translational modifications because it leads to increased enzyme phosphorylation and an increased H+/ATP coupling ratio.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2018 ◽  
Vol 25 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Abeer Hashem ◽  
Abdulaziz A. Alqarawi ◽  
Ramalingam Radhakrishnan ◽  
Al-Bandari Fahad Al-Arjani ◽  
Horiah Abdulaziz Aldehaish ◽  
...  

Cell Calcium ◽  
2020 ◽  
Vol 91 ◽  
pp. 102261
Author(s):  
Yuanjun Zhai ◽  
Zhaohong Wen ◽  
Yang Han ◽  
Wenqing Zhuo ◽  
Fang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document