Faculty Opinions recommendation of The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues.

Author(s):  
Jonathan Slack
Keyword(s):  
Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2016 ◽  
Vol 43 (2) ◽  
pp. 421-434 ◽  
Author(s):  
David Huyben ◽  
Aleksandar Vidakovic ◽  
Andreas Nyman ◽  
Markus Langeland ◽  
Torbjörn Lundh ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. R926-R935 ◽  
Author(s):  
H. Sakaguchi ◽  
H. Suzuki ◽  
H. Hagiwara ◽  
H. Kaiya ◽  
Y. Takei ◽  
...  

125I-labeled eel atrial natriuretic peptide (ANP) was administered into the ventral or dorsal aorta of freshwater (FW) and seawater (SW) eels, Anguilla japonica, and the major target organs were explored by whole body autoradiography. Localization of the ANP binding in the target organs was also examined at tissue and cell levels by microautoradiography using tissue sections. Whole body autoradiography revealed that the specific label was accumulated predominantly in the gill, with lesser amounts in the atrium, kidney, liver, and urinary bladder. Autoradiographic grains were most dense in the secondary lamellae of the gill, particularly on the side of the efferent filamental artery. Other binding sites in target tissues were the glomerulus of the kidney, epicardium and endocardium of the atrium, bile duct/blood vessels of the liver, and interrenal cells of the head kidney. There was no difference in the distribution and density of grains between injections into the ventral aorta and dorsal aorta, although, in the former, injected 125I-labeled eel ANP passes through the gill before reaching peripheral target tissues. There was a tendency for downregulation of ANP binding sites in SW eels, especially in the gill. These results show that specific ANP binding sites are present in organs that are implicated in osmoregulation and cardiovascular regulation in eels and further suggest that the number of ANP binding sites varies according to changes in the environmental salinity.


1971 ◽  
Vol 55 (1) ◽  
pp. 47-61
Author(s):  
DANIEL P. TOEWS ◽  
G. SHELTON ◽  
D. J. RANDALL

1. Oxygen and carbon dioxide tensions were determined in the lungs and in blood from the dorsal aorta, pulmonary vein, pulmonary artery and inferior vena cava in the intact, free swimming, Amphiuma. At 15° C this animal was submerged for a large part of the time and surfaced briefly to breathe at variable time intervals, the mean period being 45 min. 2. Oxygen tensions in the lungs and in all blood vessels oscillated with the breathing cycles, falling gradually during the period of submersion and rising rapidly after the animal breathed. The absolute level of oxygen tension did not appear to constitute the effective signal beginning or ending a series of breathing movements. 3. A small oxygen gradient existed between lungs and blood in the pulmonary vein immediately after a breath. The gradient increased in size as an animal remained submerged due, it is suggested, to lung vasoconstriction increasing the transfer factor. 4. Blood in the dorsal aorta had a lower oxygen tension than that in the pulmonary vein. A right-to-left shunt occurred as blood moved through the heart. The degree of shunting increased as the animal remained submerged and pulmonary vasoconstriction occurred. Left-to-right shunt was relatively insignificant since oxygen tensions in the inferior vena cava and pulmonary artery were very similar. 5. Carbon dioxide tensions were relatively constant during the breathing-diving cycle since Amphiuma removed almost all of this gas through the skin.


1885 ◽  
Vol 38 (235-238) ◽  
pp. 8-9 ◽  
Keyword(s):  

The paper begins by explaining that it records an endeavour to elucidate the course and relations of the abdominal blood-vessels upon developmental grounds. The earliest stages of the development of the midgut and its mesentery are first 'described; and it is shown that vessels extend at very frequent intervals from the dorsal aorta to the intestine, reaching the latter by way of the mesentery.


Sign in / Sign up

Export Citation Format

Share Document