Faculty Opinions recommendation of Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria.

Author(s):  
Robert Palmer
2002 ◽  
Vol 68 (10) ◽  
pp. 4943-4950 ◽  
Author(s):  
Jeffrey B. Kaplan ◽  
Daniel H. Fine

ABSTRACT Polystyrene petri dishes containing liquid medium were inoculated with single-cell suspensions of a fresh clinical isolate of Neisseria subflava and were incubated under conditions of low vibration. N. subflava colonies grew firmly attached to the surface of the dish, while the broth remained clear. Growing colonies released cells into the medium, resulting in the appearance of 102 to 104 small satellite colonies attached to the surface of the dish in an area adjacent to each mature colony after 24 h. Satellite colonies grew in patterns of streamers shaped like jets and flares emanating from mature colonies and pointing toward the center of the dish. This dispersal pattern evidently resulted from the surface translocation of detached biofilm cells by buoyancy-driven convection currents that were generated due to slight temperature gradients in the medium. Streamers of satellite colonies ranged from 2 to >40 mm in length. Satellite colonies in very long streamers were relatively uniform in size regardless of their distance from the mature colony, suggesting that mature colonies released single cells or small clusters of cells into the medium and that the detachment, surface translocation, and subsequent surface reattachment of released cells were a transitory process. Incubation of N. subflava single cells in a perfused biofilm fermentor resulted in a large spike of the number of CFU in the perfusate after 9.5 h of growth, consistent with a rapid release of cells into the medium. Biofilm colonies of several other phylogenetically diverse oral bacteria, including Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Streptococcus mitis, and a prevalent but previously uncultured oral Streptococcus sp., exhibited similar temperature-dependent dispersal patterns in broth culture. This in vitro spreading phenotype could be a useful tool for studying biofilm dispersal in these and other nonflagellated bacteria and may have physiological relevance to biofilm dispersal in the oral cavity.


2003 ◽  
Vol 47 (11) ◽  
pp. 3531-3538 ◽  
Author(s):  
Andrew J. McBain ◽  
Robert G. Bartolo ◽  
Carl E. Catrenich ◽  
Duane Charbonneau ◽  
Ruth G. Ledder ◽  
...  

ABSTRACT Dental plaque microcosms were established under a feast-famine regimen within constant-depth film fermentors and exposed four times daily postfeeding to a triclosan (TR)-containing rinse (dentifrice) (TRD). This was diluted so that the antimicrobial content was 0.6 mg/ml. Microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE) with primers specific for the V2-V3 region of the eubacterial 16S rRNA gene (rDNA). Dominant isolates and PCR amplicons were identified by partial sequencing of 16S rDNA. TRD caused considerable decreases in the counts of both gram-negative organisms and total anaerobic cells, transiently lowered the numbers of streptococci and actinomycetes, and markedly increased the proportion of lactobacilli. DGGE indicated the presence of putatively unculturable bacteria and showed that a Porphyromonas sp. and Selenomonas infelix had been inhibited by TRD. Pure culture studies of 10 oral bacteria (eight genera) showed that Neisseria subflava, Prevotella nigrescens, and Porphyromonas gingivalis were highly susceptible to TR, while the lactobacilli and streptococci were the least susceptible. Clonal expansion of the lactobacilli in the pulsed microcosm could be explained on the basis of TR activity. The mean MICs of TR, chlorhexidine, erythromycin, penicillin V, and vancomycin for the population before and after 5 days of exposure to TRD showed few significant changes. In conclusion, changes in plaque microcosm populations following repeated exposure to TRD showed inhibition of the most susceptible flora and clonal expansion of less susceptible species.


2003 ◽  
Vol 69 (8) ◽  
pp. 4770-4776 ◽  
Author(s):  
Andrew J. McBain ◽  
Robert G. Bartolo ◽  
Carl E. Catrenich ◽  
Duane Charbonneau ◽  
Ruth G. Ledder ◽  
...  

ABSTRACT Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species.


Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


2005 ◽  
Vol 35 (9) ◽  
pp. 48
Author(s):  
MICHELE G. SULLIVAN

2019 ◽  
Vol 16 (3) ◽  
pp. 290-296 ◽  
Author(s):  
Dikdik Kurnia ◽  
Eti Apriyanti ◽  
Cut Soraya ◽  
Mieke H. Satari

Background: A significant number of antibiotics are known to inhibit peptidoglycan synthesis in the cross-linking stage, while the drug fosfomycin is the only one known to inhibit MurA. Escalated antibiotic resistance has had an impact on the efficacy of fosfomycin, thus demanding the discovery of suitable substitutes with improved potential for MurA inhibition. The aim of this work is to isolate antibacterial compounds from Sarang Semut (Myrmecodia pendans) and to evaluate their antibacterial activity against pathogenic oral bacteria of Enterococcus faecalis ATCC 29212 and inhibitory activity against MurA enzyme. Methods: The antibacterial compounds from Sarang Semut were isolated by a bioactivity-guided separation method with various solvents and combination of column chromatography on normal and reverse phases. The compounds with concentrations of 1000 and 5000 ppm were assessed against E. faecalis ATCC 29212 by agar well diffusion method, with chlorhexidine and fosfomycin being used as positive controls. Results: Two antibacterial compounds isolated from Sarang Semut were identified as two new flavonoids derivates of 1 (10 mg) and 2 (4 mg). Both compounds were tested for antibacterial activities against E. faecalis. MIC values of compounds 1 and 2 were 8.15 and 8.05 mm at 1000 ppm and 8.62 and 8.55 mm at 5000 ppm, respectively. MBC values were 156 and 625 ppm for 1 and 625 and 2500 ppm for 2, respectively. In an inhibitory murA enzyme activity assay, compounds 1 and 2 were shown to inhibit the enzyme activity by IC50 values of 21.7 and 151.3 ppm. Conclusion: The study demonstrated that ethyl acetate fraction of Sarang Semut contained antibacterial flavonoids as active constituents that showed activity against E. faecalis. These results showed the plant’s potential in herbal medicine and the development of new antibacterial agent for pathogenic dental caries.


Author(s):  
Ciro Gargiulo Isacco ◽  
Andrea Ballini ◽  
Danila De Vito ◽  
Kieu Cao Diem Nguyen ◽  
Stefania Cantore ◽  
...  

: The current treatment and prevention of oral disorders follow a very sectoral control and procedures considering mouth and its structures as system completely independent from the rest of the body. The main therapeutic approach is carried out on just to keep the levels of oral bacteria and hygiene in an acceptable range compatible with one-way vision of oral-mouth health completely separated from a systemic microbial homeostasis (eubiosis vs dysbiosis). This can negatively impact on the diagnosis of more complex systemic disease and its progression. Dysbiosis is consequence of oral and gut microbiota unbalance with consequences, as reported in current literature, in cardio vascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer’s disease. Likewise, there is the need to highlight and develop a novel philosophical approach in the treatments for oral diseases that will necessarily involve non-conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document