Faculty Opinions recommendation of Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome.

Author(s):  
John Yates
1999 ◽  
Vol 121 (1) ◽  
pp. 7-12 ◽  
Author(s):  
D. Figeys ◽  
R. Aebersold

The comprehensive analysis of biological systems requires a combination of genomic and proteomic efforts. The large-scale application of current genomic technologies provides complete genomic DNA sequences, sequence tags for expressed genes (EST’s), and quantitative profiles of expressed genes at the mRNA level. In contrast, protein analytical technology lacks the sensitivity and the sample throughput for the systematic analysis of all the proteins expressed by a tissue or cell. The sensitivity of protein analysis technology is primarily limited by the loss of analytes, due to adsorption to surfaces, and sample contamination during handling. Here we summarize our work on the development and use of microfabricated fluidic systems for the manipulation of minute amounts of peptides and delivery to an electrospray ionization tandem mass spectrometer. New data are also presented that further demonstrate the potential of these novel approaches. Specifically, we describe the use of microfabricated devices as modules to deliver femtomole amounts of protein digests to the mass spectrometer for protein identification. We also describe the use of a microfabricated module for the generation of solvent gradients at nl/min flow rates for gradient chromatography-tandem mass spectrometry. The use of microfabricated fluidic systems reduces the risk of sample contamination and sample loss due to adsorption to wetted surfaces. The ability to assemble dedicated modular systems and to operate them automatically makes the use of microfabricated systems attractive for the sensitive and large-scale analysis of proteins.


Author(s):  
Haipeng Wang

Protein identification (sequencing) by tandem mass spectrometry is a fundamental technique for proteomics which studies structures and functions of proteins in large scale and acts as a complement to genomics. Analysis and interpretation of vast amounts of spectral data generated in proteomics experiments present unprecedented challenges and opportunities for data mining in areas such as data preprocessing, peptide-spectrum matching, results validation, peptide fragmentation pattern discovery and modeling, and post-translational modification (PTM) analysis. This article introduces the basic concepts and terms of protein identification and briefly reviews the state-of-the-art relevant data mining applications. It also outlines challenges and future potential hot spots in this field.


2020 ◽  
Vol 103 (6) ◽  
pp. 1486-1497
Author(s):  
Anirban Dutta ◽  
Sandip Hingmire ◽  
Kaushik Banerjee

Abstract Background Moringa pods are known for their nutritional and health benefits. The cultivation of this crop receives frequent pesticide applications. In the absence of risk assessment data, maximum residue limits of pesticides in this crop are considered at the default level (0.01 mg/kg). However, there exists scarcely any validated method for pesticide residue analysis in this matrix. Objective This study was undertaken to develop and validate a multiresidue method for the simultaneous analysis of multi-class pesticides in moringa pods by gas chromatography-tandem mass spectrometry (GC-MS/MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Method The homogenized sample (10 g) was extracted with acetonitrile (10 mL). The extract was cleaned by dispersive solid-phase extraction using a combination of 50 mg primary secondary amine, 5 mg graphitized carbon black, and 25 mg C18 sorbents, and was directly analyzed by LC-MS/MS. Another portion of the extract was reconstituted in ethyl acetate before GC-MS/MS analysis. The method was validated as per the SANTE/12682/2019 guidelines using GC-MS/MS (180 pesticides) and LC-MS/MS instruments (203 pesticides). Results The method provided a satisfactory analysis of the targeted pesticides with good calibration linearity (r2>0.99), high precision (RSD < 20%), and accuracy (recoveries, 70 to 120%). The reconstitution of the acetonitrile extract in ethyl acetate significantly reduced the matrix effects on GC-MS/MS analysis. The use of matrix-matched standards could correct all recoveries. Conclusions The method offered a large-scale analysis of multi-class pesticides with high accuracy, and precision at 10 ng/g, and higher levels. The method performance complied with the regulatory requirements, and thus, can be implemented in routine testing purposes. Highlights The study reports a validated method for large-scale multiresidue analysis of pesticides in moringa matrix for the first time. The method provided a high throughput analysis of multi-class pesticides with satisfactory selectivity, sensitivity, accuracy, and precision.


Sign in / Sign up

Export Citation Format

Share Document