Faculty Opinions recommendation of A novel ubiquitin ligase is deficient in Fanconi anemia.

Author(s):  
Vivian Cheung
2017 ◽  
Vol 127 (8) ◽  
pp. 3013-3027 ◽  
Author(s):  
Kerstin Knies ◽  
Shojiro Inano ◽  
María J. Ramírez ◽  
Masamichi Ishiai ◽  
Jordi Surrallés ◽  
...  

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tamara Codilupi ◽  
Doreen Taube ◽  
Hanspeter Naegeli

Abstract Background DNA-crosslinking agents like cisplatin and mitomycin C (MMC) are indispensible for the treatment of many solid malignancies. These anticancer drugs generate DNA interstrand crosslinks (ICLs) that cause cell death by blocking replication forks. Many factors counteracting ICL-induced DNA replication stress, including the Fanconi anemia (FA) pathway, are regulated by ubiquitination and, therefore, ubiquitin ligases are potential targets for the sensitization of cancer cells to crosslinking agents. In this study, we investigated the function of the CRL4 ubiquitin ligase in modulating the response of cancer cells to ICL induction. Methods The two cullin paralogs CUL4A and CUL4B, which form the CRL4 ligase scaffold, were depleted in cancer cells by small interfering RNA followed by analysis of the cellular and biochemical responses to ICLs elicited upon cisplatin or MMC treatment. Results We report that the combined depletion of CUL4A and CUL4B weakens an FA pathway-dependent S phase checkpoint response. CRL4 positively stimulates the monoubiquitination of FANCD2 required for the recruitment of XPF-ERCC1, a structure-specific endonuclease that, in turn, contributes to the display of single-stranded DNA (ssDNA) at ICLs. After CRL4 down regulation, the missing ssDNA results in reduced recruitment of RPA, thereby dampening activation of ATR and CHK1 checkpoint kinases and allowing for S phase progression despite ICL induction. Conclusion Our findings indicate that CRL4 promotes cell survival by potentiating an FA pathway-dependent ssDNA-RPA signaling platform installed at ICLs. The anticancer efficacy of crosslinking agents may, therefore, be enhanced by down regulating CRL4 activity.


Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4223-4233 ◽  
Author(s):  
Toshiyasu Taniguchi ◽  
Alan D. D'Andrea

AbstractA rare genetic disease, Fanconi anemia (FA), now attracts broader attention from cancer biologists and basic researchers in the DNA repair and ubiquitin biology fields as well as from hematologists. FA is a chromosome instability syndrome characterized by childhood-onset aplastic anemia, cancer or leukemia susceptibility, and cellular hypersensitivity to DNAcrosslinking agents. Identification of 11 genes for FA has led to progress in the molecular understanding of this disease. FA proteins, including a ubiquitin ligase (FANCL), a monoubiquitinated protein (FANCD2), a helicase (FANCJ/BACH1/BRIP1), and a breast/ovarian cancer susceptibility protein (FANCD1/BRCA2), appear to cooperate in a pathway leading to the recognition and repair of damaged DNA. Molecular interactions among FA proteins and responsible proteins for other chromosome instability syndromes (BLM, NBS1, MRE11, ATM, and ATR) have also been found. Furthermore, inactivation of FA genes has been observed in a wide variety of human cancers in the general population. These findings have broad implications for predicting the sensitivity and resistance of tumors to widely used anticancer DNA crosslinking agents (cisplatin, mitomycin C, and melphalan). Here, we summarize recent progress in the molecular biology of FA and discuss roles of the FA proteins in DNA repair and cancer biology.


Cell Reports ◽  
2015 ◽  
Vol 12 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Kimberly A. Rickman ◽  
Francis P. Lach ◽  
Avinash Abhyankar ◽  
Frank X. Donovan ◽  
Erica M. Sanborn ◽  
...  

2010 ◽  
Vol 191 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Liyi Geng ◽  
Catherine J. Huntoon ◽  
Larry M. Karnitz

The Fanconi anemia (FA) network is important for the repair of interstrand DNA cross-links. A key event in FA pathway activation is the monoubiquitylation of the FA complementation group I (FANCI)–FANCD2 (ID) complex by FA complementation group L (FANCL), an E3 ubiquitin ligase. In this study, we show that RAD18, another DNA damage–activated E3 ubiquitin ligase, also participates in ID complex activation by ubiquitylating proliferating cell nuclear antigen (PCNA) on Lys164, an event required for the recruitment of FANCL to chromatin. We also found that monoubiquitylated PCNA stimulates FANCL-catalyzed FANCD2 and FANCI monoubiquitylation. Collectively, these experiments identify RAD18-mediated PCNA monoubiquitination as a central hub for the mobilization of the FA pathway by promoting FANCL-mediated FANCD2 monoubiquitylation.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Stefanie Kaech ◽  
Whitney D. Nelson ◽  
...  

Abstract Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34+ stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.


2019 ◽  
Author(s):  
Shengliu Wang ◽  
Renjing Wang ◽  
Christopher Peralta ◽  
Ayat Yaseen ◽  
Nikola P. Pavletich

ABSTRACTThe Fanconi Anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks (ICLs). The pathway is activated when a replication fork stalls because of an ICL or other replication stress. A central event in pathway activation is the mono-ubiquitination of the FANCI-FANCD2 (ID) complex by the FA Core complex, a ubiquitin ligase of nine subunits. Here we describe the cryo-EM structures of the 1.1 MDa FA Core at 3.1 angstroms, except for the FANCA subunit at 3.4, and of the complex containing Core, ID and the UBE2T ubiquitin conjugating enzyme at 4.2 angstroms. The Core has unusual stoichiometry with two copies of FANCB, FAAP100, FANCA, FAAP20, FANCG, FANCL, but only a single copy of FANCC, FANCE and FANCF. This is due to homodimers of FANCA and FANCB having incompatible 2-fold symmetry, resulting in an overall asymmetric assembly of the other subunits. The asymmetry is crucial, as it prevents the binding of a second FANC-C-E-F sub-complex that inhibits UBE2T recruitment by FANCL, and instead creates an ID binding site. The single active FANCL-UBE2T binds next to the FANCD2 ubiquitination site, prying open the FANCI-FANCD2 interface within which the ubiquitination sites are buried. These structures and biochemical data indicate a single active site ubiquitinates FANCD2 and FANCI sequentially, shedding light on a central event in the FA pathway.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1116-1116
Author(s):  
Abeer Najjar

Abstract The Fanconi anemia (FA) pathway is a major player in the control of DNA replication integrity in response to replication stress. Germline defect in the pathway results in the FA syndrome characterized by developmental abnormalities, bone marrow (BM) failure, and genome instability which greatly elevates the incidence of cancers. A pivotal step in the activation of the FA DNA repair pathway is the monoubiquitination of the FANCD2 and FANCI proteins (ID2) by the FA core complex, a unique ubiquitin ligase complex which includes eight proteins (FANCA-FANCG, FANCL, and FAAP100) and UBE2T/FANCT. This monoubiquitination event enables the recruitment of the ID2 complex to chromatin and nuclear foci at sites of DNA damage. Cells with mutations in any of the FA core complex proteins lack the ability to monoubiquitinated ID2, making ID2 ubiquitination a convergence point in the pathway, with an estimation of>90% FA patients defective in this step. Additionally, somatic mutations In FA genes render tumor cells sensitive to DNA crosslinking agents, so identification of FA pathway defects provides an opportunity for therapeutic targeting. In search for additional potential target/substrate of this unique FA core ubiquitin ligase complex, we performed a high throughput genome-wide ubiquitin-specific proteomics (UbiScan) screen and found, in addition to the ID2 complex, many ubiquitinated proteins are dysregulated (mostly downregulated) in FA deficient cells compared with that of FA proficient cells. We used a Ubiquitin Remnant Motif (K- ∑-GG) Antibody Bead Conjugate (Cell Signaling Technology), a proprietary ubiquitin branch ("K- ∑-GG") antibody with specificity for a di-glycine tag that is the remnant of ubiquitin left on protein substrates after trypsin digestion, to enrich ubiquitinated peptides from trypsin digested cell samples (shNT vs shFANCA). This enrichment is followed by LC-MS/MS analysis for quantitative profiles of hundreds to over a thousand nonredundant ubiquitinated sequences. We were successful in demonstrating that under steady-state conditions (without proteasome inhibitor treatment), the ubiquitinated forms of both FANCD2 and FANCI proteins are much higher in control (shNT) HeLa cells compared with that of the cells depleted of FANCA (shFANCA). We then collaborated with the Cell signaling technology to perform a high throughput UbiScan® analysis of total ubiquitinated proteins both in total nuclei and chromatin fractions under replicative stress conditions. UbiScan® enables researchers to isolate, identify and quantitate large numbers of ubiquitin-modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of the ubiquitination sites in cellular proteins in cell and tissue samples without preconceived biases about where these modified sites occur. A total of 16,249 redundant modified peptide assignments to 7,856 modified sites for the Ubiquitin K-GG Remnant Motif Antibody were obtained. As expected, the amount of monoubiquitinated FANCD2 (at K651) and FANCI (at K523) were highly reduced in both the nuclear and chromatin fractions of Hela cells depleted of FANCA (shA). Consistent with the earlier findings, the amount of ubiquitinated ID2 proteins were extremely low in the chromatin fraction of the Hela cells depleted of FANCA. Since there are numerous ubiquitinated proteins found to be dysregulated in our UbiScan analyses, we used the following criteria to select the target proteins based on; a) -fold changes, and b) proteins that are known to participate in the DNA repair signaling pathways. We validated our UbiScan results by using an assay system to detect endogenous protein ubiquitination. We also found a significant reduction in the ubiquitination of several DNA repair-related proteins (found in our UbiScan analysis) in FANCA deficient cells. To assess FA pathway functions, we generated HAP1 and appropriate cells knock out of these select ubiquitinated target proteins by using CRISPR-Cas9 system. Then, the KO cells were examined for FA pathway functions. These results will be discussed. In conclusion, our findings reveal that the FA core ubiquitin ligase complex regulates (directly or indirectly) the ubiquitinated levels of many novel proteins outside of the ID2 complex, and these novel target proteins may provide important additional mechanistic insights into the FA DNA repair pathway. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document