interstrand crosslinks
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 36)

H-INDEX

33
(FIVE YEARS 4)

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1763
Author(s):  
Masamichi Ishiai

The Fanconi anemia (FA) DNA repair pathway coordinates a faithful repair mechanism for stalled DNA replication forks caused by factors such as DNA interstrand crosslinks (ICLs) or replication stress. An important role of FA pathway activation is initiated by monoubiquitination of FANCD2 and its binding partner of FANCI, which is regulated by the ATM-related kinase, ATR. Therefore, regulation of the FA pathway is a good example of the contribution of ATR to genome stability. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via phosphorylation and monoubiquitination.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3846
Author(s):  
Lore Hoes ◽  
Rüveyda Dok ◽  
Kevin J. Verstrepen ◽  
Sandra Nuyts

Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.


2021 ◽  
Vol 7 (31) ◽  
pp. eabf7906
Author(s):  
Antonio Porro ◽  
Mohiuddin Mohiuddin ◽  
Christina Zurfluh ◽  
Vincent Spegg ◽  
Jingqi Dai ◽  
...  

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington’s disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle–regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Author(s):  
Qiuzhen Li ◽  
Kata Dudás ◽  
Gabriella Tick ◽  
Lajos Haracska

DNA interstrand crosslinks (ICLs) are covalently bound DNA lesions, which are commonly induced by chemotherapeutic drugs, such as cisplatin and mitomycin C or endogenous byproducts of metabolic processes. This type of DNA lesion can block ongoing RNA transcription and DNA replication and thus cause genome instability and cancer. Several cellular defense mechanism, such as the Fanconi anemia pathway have developed to ensure accurate repair and DNA replication when ICLs are present. Various structure-specific nucleases and translesion synthesis (TLS) polymerases have come into focus in relation to ICL bypass. Current models propose that a structure-specific nuclease incision is needed to unhook the ICL from the replication fork, followed by the activity of a low-fidelity TLS polymerase enabling replication through the unhooked ICL adduct. This review focuses on how, in parallel with the Fanconi anemia pathway, PCNA interactions and ICL-induced PCNA ubiquitylation regulate the recruitment, substrate specificity, activity, and coordinated action of certain nucleases and TLS polymerases in the execution of stalled replication fork rescue via ICL bypass.


2021 ◽  
Author(s):  
Daniel González‐Acosta ◽  
Elena Blanco‐Romero ◽  
Patricia Ubieto‐Capella ◽  
Karun Mutreja ◽  
Samuel Míguez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yusuke Hirata ◽  
Miki Takahashi ◽  
Yuto Yamada ◽  
Ryosuke Matsui ◽  
Aya Inoue ◽  
...  

Abstracttrans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslinks (ICLs) induced by cisplatin (CDDP). We previously reported that TFAs promote apoptosis induced by doxorubicin (Dox), a double strand break (DSB)-inducing agent, via a non-canonical apoptotic pathway independent of tumor suppressor p53 and apoptosis signal-regulating kinase (ASK1), a reactive oxygen species (ROS)-responsive kinase. However, here we found that in the case of CDDP-induced apoptosis, EA-mediated pro-apoptotic action was reversed by knockout of either p53 or ASK1, despite no increase in p53 apoptotic activity. Upon CDDP treatment, EA predominantly enhanced ROS generation, ASK1-p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway activation, and ultimately cell death, all of which were suppressed either by co-treatment of the NADPH oxidase (Nox) inhibitor Apocynin, or by knocking out its regulatory protein, receptor-interacting protein 1 (RIP1). These results demonstrate that in response to CDDP ICLs, TFAs promote p53-dependent apoptosis through the enhancement of the Nox-RIP1-ASK1-MAPK pathway activation, providing insight into the diverse pathogenetic mechanisms of TFAs according to the types of DNA damage.


2021 ◽  
Author(s):  
Amna Aqeel ◽  
Javaria Zafar ◽  
Naureen Ehsan ◽  
Qurat-Ul-Ain ◽  
Mahnoor Tariq ◽  
...  

Since the dawn of civilization, living organisms are unceasingly exposed to myriads of DNA damaging agents that can temper the ailments and negatively influence the well-being. DNA interstrand crosslinks (ICLs) are spawned by various endogenous and chemotherapeutic agents, thus posing a somber menace to genome solidity and cell endurance. However, the robust techniques of damage repair including Fanconi anemia pathway, translesion synthesis, nucleotide excision and homologous recombination repair faithfully protect the DNA by removing or tolerating damage to ensure the overall survival. Aberrations in such repair mechanisms adverse the pathophysiological states of several hereditary disorders i.e. Fanconi Anemia, xeroderma pigmentosum, cerebro-oculo-facio-skeletal syndrome and cockayne syndrome etc. Although, the recognition of ICL lesions during interphase have opened the new horizons of research in the field of genetics but still the detailed analysis of conditions in which repair should occur is largely elusive.


2021 ◽  
Author(s):  
Jean-Philippe Nougayrède ◽  
Camille Chagneau ◽  
Jean-Paul Motta ◽  
Nadège Bossuet-Greif ◽  
Marcy Belloy ◽  
...  

AbstractThe probioticEscherichia colistrain Nissle 1917 (DSM 6601, Mutaflor), generally considered as beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome thepkspathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand crosslinks in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmedin vivoin mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long term adverse effects and thus should be considered in a risk versus benefit evaluation.ImportanceNissle 1917 is sold as a probiotic and considered safe even though it is known since 2006 that it encodes the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact, or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactinin vitroandin vivoand induces mutagenic DNA damage. This is a serious safety concern that must not be ignored, for the interests of patients, the general public, health care professionals and ethical probiotic manufacturers.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1442
Author(s):  
Jemina Lehto ◽  
Anna Huguet Ninou ◽  
Dimitrios Chioureas ◽  
Jos Jonkers ◽  
Nina M. S. Gustafsson

The C-X3-C motif chemokine receptor 1 (CX3CR1, fractalkine receptor) is associated with neoplastic transformation, inflammation, neurodegenerative diseases and aging, and the small molecule inhibitor KAND567 targeting CX3CR1 (CX3CR1i) is evaluated in clinical trials for acute systemic inflammation upon SARS-CoV-2 infections. Here we identify a hitherto unknown role of CX3CR1 in Fanconi anemia (FA) pathway mediated repair of DNA interstrand crosslinks (ICLs) in replicating cells. FA pathway activation triggers CX3CR1 nuclear localization which facilitates assembly of the key FA protein FANCD2 into foci. Interfering with CX3CR1 function upon ICL-induction results in inability of replicating cells to progress from S phase, replication fork stalling and impaired chromatin recruitment of key FA pathway factors. Consistent with defective FA repair, CX3CR1i results in increased levels of residual cisplatin-DNA adducts and decreased cell survival. Importantly, CX3CR1i synergizes with platinum agents in a nonreversible manner in proliferation assays including platinum resistant models. Taken together, our results reveal an unanticipated interplay between CX3CR1 and the FA pathway and show for the first time that a clinical-phase small molecule inhibitor targeting CX3CR1 might show benefit in improving responses to DNA crosslinking chemotherapeutics.


2021 ◽  
Author(s):  
Eugenia Cordelli ◽  
Margherita Bignami ◽  
Francesca Pacchierotti

Abstract The comet assay is a versatile method for measuring DNA strand breaks in individual cells. It can also be applied to cells isolated from treated animals. In this review, we highlight advantages and limitations of this in vivo comet assay in a regulatory context. Modified versions of the standard protocol detect oxidized DNA bases and may be used to reveal sites of DNA base loss, DNA interstrand crosslinks, and the extent of DNA damage induced indirectly by reactive oxygen species elicited by chemical-induced oxidative stress. The assay is, however, at best semi-quantitative, and we discuss possible approaches to improving DNA damage quantitation and highlight the necessity of optimizing protocol standardization to enhance the comparability of results between laboratories. As a genotoxicity test in vivo, the in vivo comet assay has the advantage over the better established micronucleus erythrocyte test that it can be applied to any organ, including those that are specific targets of chemical carcinogens or those that are the first sites of contact of ingested or inhaled mutagens. We illustrate this by examples of its use in risk assessment for the food contaminants ochratoxin and furan. We suggest that improved quantitation is required to reveal the full potential of the comet assay and enhance its role in the battery of in vivo approaches to characterize the mechanisms of toxicity and carcinogenicity of chemicals and to aid the determination of safe human exposure limits.


Sign in / Sign up

Export Citation Format

Share Document