Faculty Opinions recommendation of Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system.

Author(s):  
Bonnie Bassler
RNA Biology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Diego Rivera Gelsinger ◽  
Rahul Reddy ◽  
Kathleen Whittington ◽  
Sara Debic ◽  
Jocelyne DiRuggiero

Author(s):  
Brandon M. Sy ◽  
Jai J. Tree

Enteric and extraintestinal pathotypes of Escherichia coli utilize a wide range of virulence factors to colonize niches within the human body. During infection, virulence factors such as adhesins, secretions systems, or toxins require precise regulation and coordination to ensure appropriate expression. Additionally, the bacteria navigate rapidly changing environments with fluctuations in pH, temperature, and nutrient levels. Enteric pathogens utilize sophisticated, interleaved systems of transcriptional and post-transcriptional regulation to sense and respond to these changes and modulate virulence gene expression. Regulatory small RNAs and RNA-binding proteins play critical roles in the post-transcriptional regulation of virulence. In this review we discuss how the mosaic genomes of Escherichia coli pathotypes utilize small RNA regulation to adapt to their niche and become successful human pathogens.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8932 ◽  
Author(s):  
Julie Leclercq ◽  
Shuangyang Wu ◽  
Benoît Farinas ◽  
Stéphanie Pointet ◽  
Bénédicte Favreau ◽  
...  

Background Small RNAs modulate plant gene expression at both the transcriptional and post-transcriptional level, mostly through the induction of either targeted DNA methylation or transcript cleavage, respectively. Small RNA networks are involved in specific plant developmental processes, in signaling pathways triggered by various abiotic stresses and in interactions between the plant and viral and non-viral pathogens. They are also involved in silencing maintenance of transposable elements and endogenous viral elements. Alteration in small RNA production in response to various environmental stresses can affect all the above-mentioned processes. In rubber trees, changes observed in small RNA populations in response to trees affected by tapping panel dryness, in comparison to healthy ones, suggest a shift from a transcriptional to a post-transcriptional regulatory pathway. This is the first attempt to characterise small RNAs involved in post-transcriptional silencing and their target transcripts in Hevea. Methods Genes producing microRNAs (MIR genes) and loci producing trans-activated small interfering RNA (ta-siRNA) were identified in the clone PB 260 re-sequenced genome. Degradome libraries were constructed with a pool of total RNA from six different Hevea tissues in stressed and non-stressed plants. The analysis of cleaved RNA data, associated with genomics and transcriptomics data, led to the identification of transcripts that are affected by 20–22 nt small RNA-mediated post-transcriptional regulation. A detailed analysis was carried out on gene families related to latex production and in response to growth regulators. Results Compared to other tissues, latex cells had a higher proportion of transcript cleavage activity mediated by miRNAs and ta-siRNAs. Post-transcriptional regulation was also observed at each step of the natural rubber biosynthesis pathway. Among the genes involved in the miRNA biogenesis pathway, our analyses showed that all of them are expressed in latex. Using phylogenetic analyses, we show that both the Argonaute and Dicer-like gene families recently underwent expansion. Overall, our study underlines the fact that important biological pathways, including hormonal signalling and rubber biosynthesis, are subject to post-transcriptional silencing in laticifers.


2014 ◽  
Vol 17 (1) ◽  
pp. 199-214 ◽  
Author(s):  
Silvia Ferrara ◽  
Sara Carloni ◽  
Roberta Fulco ◽  
Marilena Falcone ◽  
Raffaella Macchi ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 682 ◽  
Author(s):  
Qingyi Wang ◽  
Zhigang Zhao ◽  
Xiaotuo Zhang ◽  
Chenyu Lu ◽  
Shuchao Ren ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNAs that are critical in post-transcriptional regulation. Macaca mulatta is an important nonhuman primate that is often used in basic and translational researches. However, the annotation of miRNAs in Macaca mulatta is far from complete, and there are no reports of miRNA editing events in Macaca mulatta, although editing may affect the biogenesis or functions of the miRNAs. To improve miRNA annotation and to reveal editing events of miRNAs in Macaca mulatta, we generated 12 small RNA profiles from eight tissues and performed comprehensive analysis of these profiles. We identified 479 conserved pre-miRNAs that have not been reported in Macaca mulatta and 17 species specific miRNAs. Furthermore, we identified 3386 editing sites with significant editing levels from 471 pre-miRNAs after analyzing the 12 self-generated and 58 additional published sRNA-seq profiles from 17 different types of organs or tissues. In addition to 16 conserved A-to-I editing sites, we identified five conserved C-to-U editing sites in miRNAs of Macaca mulatta and Homo sapiens. We also identified 11 SNPs in the miRNAs of Macaca mulatta. The analysis of the potential targets of 69 miRNAs with editing or mutation events in their seed regions suggest that these editing or mutation events severely changed their targets and their potential functions. These results significantly increase our understanding of miRNAs and their mutation/editing events in Macaca mulatta.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 43-OR
Author(s):  
DINA MOSTAFA ◽  
AKINORI TAKAHASHI ◽  
TADASHI YAMAMOTO

Sign in / Sign up

Export Citation Format

Share Document