Faculty Opinions recommendation of rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase.

Author(s):  
Tina Henkin
Cell ◽  
2006 ◽  
Vol 125 (6) ◽  
pp. 1069-1082 ◽  
Author(s):  
Shanil P. Haugen ◽  
Melanie B. Berkmen ◽  
Wilma Ross ◽  
Tamas Gaal ◽  
Christopher Ward ◽  
...  

2016 ◽  
Vol 113 (21) ◽  
pp. E2899-E2905 ◽  
Author(s):  
Irina O. Vvedenskaya ◽  
Hanif Vahedian-Movahed ◽  
Yuanchao Zhang ◽  
Deanne M. Taylor ◽  
Richard H. Ebright ◽  
...  

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein–DNA interactions with the downstream part of the nontemplate strand of the transcription bubble (“core recognition element,” CRE). Here, we investigated whether sequence-specific RNAP–CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP–CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP–CRE interactions on TSS selection in vitro and in vivo for a library of 47 (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP–CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5′ merodiploid native-elongating-transcript sequencing, 5′ mNET-seq, we assessed effects of RNAP–CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP–CRE interactions determine TSS selection. Our findings establish RNAP–CRE interactions are a functional determinant of TSS selection. We propose that RNAP–CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1729-1740 ◽  
Author(s):  
Deborah M. Hinton ◽  
Suchira Pande ◽  
Neelowfar Wais ◽  
Xanthia B. Johnson ◽  
Madhavi Vuthoori ◽  
...  

Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with the σ 70 specificity subunit of Escherichia coli RNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonical σ 70 DNA element located in the −10 region. However, instead of the σ 70 DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts of σ 70 with the −10 region. This type of activation, which is called ‘σ appropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to force σ 70 to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA with σ 70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region of σ 70, region 4, with the host −35 DNA element and with other subunits of polymerase.


Science ◽  
2014 ◽  
Vol 344 (6189) ◽  
pp. 1285-1289 ◽  
Author(s):  
I. O. Vvedenskaya ◽  
H. Vahedian-Movahed ◽  
J. G. Bird ◽  
J. G. Knoblauch ◽  
S. R. Goldman ◽  
...  

2006 ◽  
Vol 34 (6) ◽  
pp. 1047-1050 ◽  
Author(s):  
T. Juven-Gershon ◽  
J.-Y. Hsu ◽  
J.T. Kadonaga

The RNA polymerase II core promoter is a critical yet often overlooked component in the transcription process. The core promoter is defined as the stretch of DNA, which encompasses the RNA start site and is typically approx. 40–50 nt in length, that directs the initiation of gene transcription. In the past, it has been generally presumed that core promoters are general in function and that transcription initiation occurs via a common shared mechanism. Recent studies have revealed, however, that there is considerable diversity in core promoter structure and function. There are a number of DNA elements that contribute to core promoter activity, and the specific properties of a given core promoter are dictated by the presence or absence of these core promoter motifs. The known core promoter elements include the TATA box, Inr (initiator), BREu {BRE [TFIIB (transcription factor for RNA polymerase IIB) recognition element] upstream of the TATA box} and BREd (BRE downstream of the TATA box), MTE (motif ten element), DCE (downstream core element) and DPE (downstream core promoter element). In this paper, we will provide some perspectives on current and future issues that pertain to the RNA polymerase II core promoter.


Science ◽  
1993 ◽  
Vol 262 (5138) ◽  
pp. 1407-1413 ◽  
Author(s):  
W Ross ◽  
K. Gosink ◽  
J Salomon ◽  
K Igarashi ◽  
C Zou ◽  
...  

Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document