Faculty Opinions recommendation of Small-molecule regulation of zebrafish gene expression.

Author(s):  
Brant Weinstein
Theranostics ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 8172-8184
Author(s):  
Fangrui Wu ◽  
Shenyou Nie ◽  
Yuan Yao ◽  
Tong Huo ◽  
Xin Li ◽  
...  

2020 ◽  
Author(s):  
A Andrianto ◽  
Adityo Basworo ◽  
Ivana Purnama Dewi ◽  
Budi Susetio Pikir

IntroductionIt is possible to induce pluripotent stem cells from somatic cells, offering an infinite cell resource with the potential for disease research and use in regenerative medicine. Due to ease of accessibility, minimum invasive treatment, and can be kept frozen, peripheral blood mononuclear cells (PBMC) were an attractive source cell. VC6TFZ, a small molecule compound, has been successfully reprogrammed from mouse fibroblast induced pluripotent stem cells (iPSCs). However, it has not been confirmed in humans.ObjectiveThe aim of this research is to determine whether the small molecule compound VC6TFZ can induced pluripotency of PBMC to generate iPSCs detected with expression of SSEA4 and TRA1-60.MethodsUsing the centrifugation gradient density process, mononuclear cells were separated from peripheral venous blood. Mononuclear cells were cultured for 6 days in the expansion medium. The cells were divided into four groups; group 1 (P1), which was not exposed to small molecules (control group) and groups 2-4 (P2-P4), the experimental groups, subjected to various dosages of the small molecule compound VC6TFZ (VPA, CHIR, Tranylcypromine, FSK, Dznep, and TTNPB). The induction of pluripotency using small molecule compound VC6TFZ was completed within 14 days, then for 7 days the medium shifted to 2i medium. iPSCs identification in based on colony morphology and pluripotent gene expression, SSEA4 and TRA1-60 marker, using immunocytochemistry.ResultsColonies appeared on reprogramming process in day 7th. These colonies had round, large, and cobble stone morphology like ESC. Gene expression of SSEA4 and TRA 1-60 increased statisticaly significant than control group (SSEA4 were P2 p=0.007; P3 p=0.001; P4 p=0.009 and TRA 1-60 were P2 p=0.002; P3 p=0.001; P4 p=0.001).ConclusionSmall molecule compound VC6TFZ could induced pluripotency of human PBMC to generate iPSCs. Pluripotxency marker gene expression, SSEA 4 and TRA 1-60, in the experimental group was statistically significantly higher than in the control group.


2020 ◽  
Author(s):  
Xi Pan ◽  
Jian-Hao Liu

Abstract Background Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma that the underlying molecular mechanisms involved in the tumor initiation, progression, and migration are largely unclear. The purpose of the present study was to identify key biomarkers and small-molecule drugs for NPC screening, diagnosis, and therapy via gene expression profile analysis. Methods Raw microarray data of NPC were retrieved from the Gene Expression Omnibus (GEO) database and analyzed to screen out the potential differentially expressed genes (DEGs). The key modules associated with histology grade and tumor stage was identified by using weighted correlation network analysis (WGCNA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes in the key module were performed to identify potential mechanisms. Candidate hub genes were obtained, which based on the criteria of module membership (MM) and high connectivity. Then we used receiver operating characteristic (ROC) curve to evaluate the diagnostic value of hub genes. The Connectivity map database was further used to screen out small-molecule drugs of hub genes. Results A total of 430 DEGs were identified based on two GEO datasets. The green gene module was considered as key module for the tumor stage of NPC via WGCNA analysis. The results of functional enrichment analysis revealed that genes in the green module were enriched in regulation of cell cycle, p53 signaling pathway, cell part morphogenesis. Furthermore, four DEGs-related hub genes in the green module were considered as the final hub genes. Then ROC revealed that the final four hub genes presented with high areas under the curve, suggesting these hub genes may be diagnostic biomarkers for NPC. Meanwhile, we screened out several small-molecule drugs that have provided potentially therapeutic goals for NPC. Conclusions Our research identified four potential prognostic biomarkers and several candidate small-molecule drugs for NPC, which may contribute to the new insights for NPC therapy.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 650 ◽  
Author(s):  
Wlaa Assi ◽  
Tomoya Hirose ◽  
Satoshi Wada ◽  
Ryosuke Matsuura ◽  
Shin-nosuke Takeshima ◽  
...  

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


2009 ◽  
Vol 5 (10) ◽  
pp. e1000641 ◽  
Author(s):  
James C. Charity ◽  
LeeAnn T. Blalock ◽  
Michelle M. Costante-Hamm ◽  
Dennis L. Kasper ◽  
Simon L. Dove

2008 ◽  
Vol 1147 (1) ◽  
pp. 383-394 ◽  
Author(s):  
Rajiv R. Ratan ◽  
Ambreena Siddiq ◽  
Leila Aminova ◽  
Brett Langley ◽  
Stephen McConoughey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document