Faculty Opinions recommendation of DNA-VLP prime-boost intra-nasal immunization induces cellular and humoral anti-HIV-1 systemic and mucosal immunity with cross-clade neutralizing activity.

Author(s):  
James Tartaglia
Vaccine ◽  
2007 ◽  
Vol 25 (32) ◽  
pp. 5968-5977 ◽  
Author(s):  
L. Buonaguro ◽  
C. Devito ◽  
M.L. Tornesello ◽  
U. Schröder ◽  
B. Wahren ◽  
...  

2018 ◽  
Vol 202 (3) ◽  
pp. 799-804 ◽  
Author(s):  
Melissa A. Gawron ◽  
Mark Duval ◽  
Claudia Carbone ◽  
Smita Jaiswal ◽  
Aaron Wallace ◽  
...  

2006 ◽  
Vol 80 (6) ◽  
pp. 3030-3041 ◽  
Author(s):  
Eloisa Yuste ◽  
Hannah B. Sanford ◽  
Jill Carmody ◽  
Jacqueline Bixby ◽  
Susan Little ◽  
...  

ABSTRACT To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.


2015 ◽  
Vol 89 (23) ◽  
pp. 11975-11989 ◽  
Author(s):  
Edurne Rujas ◽  
Naveed Gulzar ◽  
Koldo Morante ◽  
Kouhei Tsumoto ◽  
Jamie K. Scott ◽  
...  

ABSTRACTThe 4E10 antibody recognizes the membrane-proximal external region (MPER) of the HIV-1 Env glycoprotein gp41 transmembrane subunit, exhibiting one of the broadest neutralizing activities known to date. The neutralizing activity of 4E10 requires solvent-exposed hydrophobic residues at the apex of the complementarity-determining region (CDR) H3 loop, but the molecular basis for this requirement has not been clarified. Here, we report the cocrystal structures and the energetic parameters of binding of a peptide bearing the 4E10-epitope sequence (4E10ep) to nonneutralizing versions of the 4E10 Fab. Nonneutralizing Fabs were obtained by shortening and decreasing the hydrophobicity of the CDR-H3 loop (termed ΔLoop) or by substituting the two tryptophan residues of the CDR-H3 apex with Asp residues (termed WDWD), which also decreases hydrophobicity but preserves the length of the loop. The analysis was complemented by the first crystal structure of the 4E10 Fab in its ligand-free state. Collectively, the data ruled out major conformational changes of CDR-H3 at any stage during the binding process (equilibrium or transition state). Although these mutations did not impact the affinity of wild-type Fab for the 4E10ep in solution, the two nonneutralizing versions of 4E10 were deficient in binding to MPER inserted in the plasma membrane (mimicking the environment faced by the antibodyin vivo). The conclusions of our structure-function analysis strengthen the idea that to exert effective neutralization, the hydrophobic apex of the solvent-exposed CDR-H3 loop must recognize an antigenic structure more complex than just the linear α-helical epitope and likely constrained by the viral membrane lipids.IMPORTANCEThe broadly neutralizing anti-HIV-1 4E10 antibody blocks infection caused by nearly all viral strains and isolates examined thus far. However, 4E10 (or 4E10-like) antibodies are rarely found in HIV-1-infected individuals or elicited through vaccination. Impediments to the design of successful 4E10 immunogens are partly attributed to an incomplete understanding of the structural and binding characteristics of this class of antibodies. Since the broadly neutralizing activity of 4E10 is abrogated by mutations of the tip of the CDR-H3, we investigated their impact on binding of the MPER-epitope at the atomic and energetic levels. We conclude that the difference between neutralizing and nonneutralizing antibodies of 4E10 is neither structural nor energetic but is related to the capacity to recognize the HIV-1 gp41 epitope inserted in biological membranes. Our findings strengthen the idea that to elicit similar neutralizing antibodies, the suitable MPER vaccine must be “delivered” in a membrane environment.


2021 ◽  
Author(s):  
Xinyu Zhang ◽  
Zehua Zhou ◽  
Xueli Li ◽  
Yimeng An ◽  
Fei Jiang ◽  
...  

Abstract Owing to the increasing prevalence of HIV-1 CRF_01AE, it is necessary to understand the neutralization properties of CRF_01AE and to develop broadly neutralizing monoclonal antibodies (bnmAbs) that can neutralize this virus. The full-length Env gene was cloned from HIV-1 CRF01_AE-infected plasma specimens collected in China and used to establish pseudoviruses. Neutralization phenotypes of the pseudoviruses were characterized with bnmAbs. The neutralizing activities of 11 bnmAbs VRC01, VRC03, IgG1b12 and 3BNC117 (targeting the CD4 binding site); PG9 (targeting the V1V2 region); 2G12 (sugar chain specific), PGT135 and 10-1074 (targeting the V3 region); 2F5, 4E10 and 10E8 (targeting the membrane proximal external region), against 36 pseudoviruses were analyzed, demonstrating varying efficacies. In general, VRC01, 10E8 and 3BNC117 showed strong neutralizing activity, neutralizing more than 75% of the pseudoviruses; followed by PG9 and 4E10, showing moderate neutralizing activity with neutralization of 50%–60% of the pseudoviruses; whereas the efficacies of the remaining bnmAbs were poor, neutralizing less than 15% of pseudoviruses tested. Env variants of CRF_01AE also showed significant differences in resistance to neutralization. CRF_01AE Env variants pose a serious challenge for the development of bnmAbs and vaccines, and these characterized HIV-1 CRF_01AE pseudoviruses could be used for neutralization studies and evaluation of vaccines or anti-HIV-1 products in China.


2012 ◽  
Vol 16 ◽  
pp. e191
Author(s):  
S. Sapsutthipas ◽  
N. Tsuchiya ◽  
P. Pathipavanich ◽  
K. Ariyoshi ◽  
P. Sawanpanyalert ◽  
...  

2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Yehuda Z. Cohen ◽  
Julio C. C. Lorenzi ◽  
Michael S. Seaman ◽  
Lilian Nogueira ◽  
Till Schoofs ◽  
...  

ABSTRACT Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.


2021 ◽  
Author(s):  
Xinyu Zhang ◽  
Zehua Zhou ◽  
Xueli Li ◽  
Yimeng An ◽  
Fei Jiang ◽  
...  

Abstract Owing to the increasing prevalence of HIV-1 CRF01_AE, it is necessary to understand the neutralization properties of CRF01_AE and to develop broadly neutralizing monoclonal antibodies (bnmAbs) that can neutralize this virus. The full-length Env gene was cloned from HIV-1 CRF01_AE-infected plasma specimens collected in China and used to establish pseudoviruses. Neutralization phenotypes of the pseudoviruses were characterized with bnmAbs. The neutralizing activities of 11 bnmAbs VRC01, VRC03, IgG1b12 and 3BNC117 (targeting the CD4 binding site); PG9 (targeting the V1V2 region); 2G12 (targeting the high mannose patch), PGT135 and 10-1074 (targeting the V3 glycans); 2F5, 4E10 and 10E8 (targeting the membrane proximal external region), against 36 pseudoviruses were analyzed, demonstrating varying efficacies. In general, VRC01, 10E8 and 3BNC117 showed strong neutralizing activity, neutralizing more than 75% of the pseudoviruses; followed by PG9 and 4E10, showing moderate neutralizing activity with neutralization of 50%–60% of the pseudoviruses; whereas the efficacies of the remaining bnmAbs were poor, neutralizing less than 15% of pseudoviruses tested. Env variants of CRF01_AE from one infection also showed significant differences in resistance to neutralization. These characterized HIV-1 CRF01_AE pseudoviruses could be used for neutralization studies and evaluation of vaccines or anti-HIV-1 products in China.


2020 ◽  
Author(s):  
Julio C. C. Lorenzi ◽  
Pilar Mendoza ◽  
Yehuda Z. Cohen ◽  
Lilian Nogueira ◽  
Christy Lavine ◽  
...  

Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional activity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro neutralizing activity against HIV-1 Env pseudotyped viruses. Here we report on the neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126 Clade A, C, D PBMC-derived primary African isolates. The neutralizing potency and breadth of the bNAbs tested was significantly reduced compared to pseudotyped viruses panels. The difference in sensitivity between pseudotyped viruses and primary isolates varied from 3- to nearly 100-fold depending on the bNAb and the HIV-1 clade. Thus, the neutralizing activity of bNAbs against primary African isolates differs from their activity against pseudovirus panels. The data have significant implications for interpreting the results of ongoing HIV-1 prevention trials. IMPORTANCE HIV remains a major public health problem worldwide, and new therapies and preventive strategies are necessary for controlling the epidemic. Broadly neutralizing antibodies (bNAbs) have been developed in the past decade to fill this gap. The neutralizing activity of these antibodies against diverse HIV strains has mostly been measured using Env-pseudotyped viruses, which overestimate bNAb coverage and potency. In this study we measured the neutralizing activity of nine bNAbs against clade A, C, and D HIV isolates derived from cells of African patients living with HIV and produced in peripheral blood mononuclear cells. We found that the coverage and potency of bNAbs were often significantly lower than what was predicted by Env-psuedotyped viruses, and that this decrease was related to the bNAb biding site class. This data is important for the planning and analysis of clinical trials that seek to evaluate bNAbs for the treatment and prevention of HIV infection in Africa.


2020 ◽  
Author(s):  
Julio C.C. Lorenzi ◽  
Pilar Mendoza ◽  
Yehuda Z. Cohen ◽  
Lilian Nogueira ◽  
Christy Lavine ◽  
...  

AbstractNovel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional activity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro neutralizing activity against HIV-1 Env pseudotyped viruses. Here we report on the neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126 Clade A, C, D PBMC-derived primary African isolates. The neutralizing potency and breadth of the bNAbs tested was significantly reduced compared to pseudotyped viruses panels. The difference in sensitivity between pseudotyped viruses and primary isolates varied from 3-to nearly 100-fold depending on the bNAb and the HIV-1 clade. Thus, the neutralizing activity of bNAbs against primary African isolates differs and cannot be predicted from their activity against pseudovirus panels. The data have significant implications for interpreting the results of ongoing HIV-1 prevention trials.


Sign in / Sign up

Export Citation Format

Share Document