Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response

2020 ◽  
Vol 27 (20) ◽  
pp. 3330-3345
Author(s):  
Ana G. Rodríguez-Hernández ◽  
Rafael Vazquez-Duhalt ◽  
Alejandro Huerta-Saquero

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1651
Author(s):  
Hyo-Sop Kim ◽  
Bit Na Lee ◽  
Sangdun Choi ◽  
Moon Suk Kim ◽  
Jae-Ho Kim

The aim of the present work was to evaluate the responses of rat muscle-derived stem cells (rMDSCs) to growth on silica nanostructured substrates (SN) with nanoscale topographic surfaces. SN of different sizes (SN-60, SN-150, SN-300, SN-500, and SN-700) were prepared using silica nanoparticles with sizes of 60–700 nm. The prepared SN showed roughness at the nanoscale level. The total number of adherent cells on SN increased with increasing nanoscale level and incubation time. The rMDSCs attached to SN-500 and SN-700 were extensively flattened, whereas those grown on SN-60, SN-150, and SN-300 were more rounded. The rank order of the cell length and height of attached rMDSCs at 5 d on different surfaces was SN-60 ≈ SN-150 >> SN-300 > SN-500 > SN-700 > glass. Compared with rMDSCs grown on SN-60, SN-150, or SN-300, those attached to SN-500 and SN-700 exhibited a distinct morphology with filopodial extensions and stronger expression of focal adhesion, integrin, and actin. An evaluation of the gene expression of adhered rMDSCs showed that rMDSCs grown on SN-300 exhibited a higher environmental stress response than those grown on glass or SN-700. Collectively, our data provide fundamental insight into the cellular response and gene expression of rMDSCs grown on nanostructured substrates.


2021 ◽  
Author(s):  
Xiafei Zhang ◽  
Sara N. Andres ◽  
Marie A. Elliot

Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome, and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to 'counter-silence' Lsr2's repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1910
Author(s):  
Bailey Engle ◽  
Molly Masters ◽  
Jane Ann Boles ◽  
Jennifer Thomson

Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.


Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1727-1736 ◽  
Author(s):  
Maxim V Frolov ◽  
Elizaveta V Benevolenskaya ◽  
James A Birchler

Abstract A P-element insertion in the oxen gene, ox1, has been isolated in a search for modifiers of white gene expression. The mutation preferentially exerts a negative dosage effect upon the expression of three genes encoding ABC transporters involved in pigment precursor transport, white, brown, and scarlet. A precise excision of the P element reverts the mutant phenotype. Five different transcription units were identified around the insertion site. To distinguish a transcript responsible for the mutant phenotype, a set of deletions within the oxen region was generated. Analysis of gene expression within the oxen region in the case of deletions as well as generation of transgenic flies allowed us to identify the transcript responsible for oxen function. It encodes a 6.6-kD homolog of mitochondrial ubiquinol cytochrome c oxidoreductase (QCR9), subunit 9 of the bc1 complex in yeast. In addition to white, brown, and scarlet, oxen regulates the expression of three of seven tested genes. Thus, our data provide additional evidence for a cellular response to changes in mitochondrial function. The oxen mutation provides a model for the genetic analysis in multicellular organisms of the effect of mitochondrial activity on nuclear gene expression.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1425
Author(s):  
Alena Shmakova ◽  
Mark Frost ◽  
Michael Batie ◽  
Niall S. Kenneth ◽  
Sonia Rocha

PBRM1, a component of the chromatin remodeller SWI/SNF, is often deleted or mutated in human cancers, most prominently in renal cancers. Core components of the SWI/SNF complex have been shown to be important for the cellular response to hypoxia. Here, we investigated how PBRM1 controls HIF-1α activity. We found that PBRM1 is required for HIF-1α transcriptional activity and protein levels. Mechanistically, PBRM1 is important for HIF-1α mRNA translation, as absence of PBRM1 results in reduced actively translating HIF-1α mRNA. Interestingly, we found that PBRM1, but not BRG1, interacts with the m6A reader protein YTHDF2. HIF-1α mRNA is m6A-modified, bound by PBRM1 and YTHDF2. PBRM1 is necessary for YTHDF2 binding to HIF-1α mRNA and reduction of YTHDF2 results in reduced HIF-1α protein expression in cells. Our results identify a SWI/SNF-independent function for PBRM1, interacting with HIF-1α mRNA and the epitranscriptome machinery. Furthermore, our results suggest that the epitranscriptome-associated proteins play a role in the control of hypoxia signalling pathways.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zi Wang ◽  
Pan Wang ◽  
Yanan Li ◽  
Hongling Peng ◽  
Yu Zhu ◽  
...  

AbstractHematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.


2019 ◽  
Vol 5 ◽  
Author(s):  
Mary J. Maclean ◽  
W. Walter Lorenz ◽  
Michael T. Dzimianski ◽  
Christopher Anna ◽  
Andrew R. Moorhead ◽  
...  

AbstractLymphatic filariasis (LF) threatens nearly 20% of the world's population and has handicapped one-third of the 120 million people currently infected. Current control and elimination programs for LF rely on mass drug administration of albendazole plus diethylcarbamazine (DEC) or ivermectin. Only the mechanism of action of albendazole is well understood. To gain a better insight into antifilarial drug actionin vivo, we treated gerbils harbouring patentBrugia malayiinfections with 6 mg kg−1DEC, 0.15 mg kg−1ivermectin or 1 mg kg−1albendazole. Treatments had no effect on the numbers of worms present in the peritoneal cavity of treated animals, so effects on gene expression were a direct result of the drug and not complicated by dying parasites. Adults and microfilariae were collected 1 and 7 days post-treatment and RNA isolated for transcriptomic analysis. The experiment was repeated three times. Ivermectin treatment produced the most differentially expressed genes (DEGs), 113. DEC treatment yielded 61 DEGs. Albendazole treatment resulted in little change in gene expression, with only 6 genes affected. In total, nearly 200 DEGs were identified with little overlap between treatment groups, suggesting that these drugs may interfere in different ways with processes important for parasite survival, development, and reproduction.


Sign in / Sign up

Export Citation Format

Share Document