Faculty Opinions recommendation of T helper 17 cells promote cytotoxic T cell activation in tumor immunity.

Author(s):  
Mohamed Sayegh ◽  
Jessamyn Bagley
Immunity ◽  
2009 ◽  
Vol 31 (5) ◽  
pp. 787-798 ◽  
Author(s):  
Natalia Martin-Orozco ◽  
Pawel Muranski ◽  
Yeonseok Chung ◽  
Xuexian O. Yang ◽  
Tomohide Yamazaki ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Youqian Wu ◽  
Chao Zhang ◽  
Xiaolan Liu ◽  
Zhengfu He ◽  
Bing Shan ◽  
...  

AbstractCancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood. Here, we identify several compounds as inducers of PD-L1 degradation using a high-throughput drug screen. We find EGFR inhibitors promote PD-L1 ubiquitination and proteasomal degradation following GSK3α-mediated phosphorylation of Ser279/Ser283. We identify ARIH1 as the E3 ubiquitin ligase responsible for targeting PD-L1 to degradation. Overexpression of ARIH1 suppresses tumor growth and promotes cytotoxic T cell activation in wild-type, but not in immunocompromised mice, highlighting the role of ARIH1 in anti-tumor immunity. Moreover, combining EGFR inhibitor ES-072 with anti-CTLA4 immunotherapy results in an additive effect on both tumor growth and cytotoxic T cell activation. Our results delineate a mechanism of PD-L1 degradation and cancer escape from immunity via EGFR-GSK3α-ARIH1 signaling and suggest GSK3α and ARIH1 might be potential drug targets to boost anti-tumor immunity and enhance immunotherapies.


Oncogene ◽  
2021 ◽  
Author(s):  
Francesca Alfei ◽  
Ping-Chih Ho ◽  
Wan-Lin Lo

AbstractThe exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell–T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


2000 ◽  
Vol 278 (6) ◽  
pp. L1221-L1230 ◽  
Author(s):  
Holger Garn ◽  
Anke Friedetzky ◽  
Andrea Kirchner ◽  
Ruth Jäger ◽  
Diethard Gemsa

In chronic silicosis, mechanisms leading to lymphocyte activation are still poorly understood, although it is well known that not only the lung but also the draining lymph nodes are affected. In the present study, we investigated T-cell activation by analysis of cytokine expression in the enlarged thoracic lymph nodes of rats 2 mo after an 8-day silica aerosol exposure. In the case of helper T cell (Th) type 1 cytokines, we found a significant increase in interferon (IFN)-γ mRNA expression, whereas interleukin (IL)-2 expression remained unchanged. In contrast, gene transcription for the Th2-type cytokines IL-4 and IL-10 was diminished. In addition, with use of an in vitro lymphocyte-macrophage coculture system, an enhanced IFN-γ and a reduced IL-10 release were shown with cells from silicotic animals. With regard to IFN-γ-inducing cytokines, we observed enhanced IL-12 mRNA levels in vivo, whereas IL-18 gene expression was slightly decreased. These data indicate that a persistent shift toward an IFN-γ-dominated type 1 (Th1/cytotoxic T cell type 1) T-cell reaction pattern occurred within the thoracic lymph nodes of silicotic animals. Thus a mutual activation of lymphocytes and macrophages may maintain the chronic inflammatory changes that characterize silicosis.


Sign in / Sign up

Export Citation Format

Share Document