Faculty Opinions recommendation of RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: a potent gene silencing system to produce a plant that does not carry a transgene but has altered traits.

Author(s):  
Marjori Matzke
2011 ◽  
Vol 6 (8) ◽  
pp. 1090-1093 ◽  
Author(s):  
Akira Kanazawa ◽  
Jun-ichi Inaba ◽  
Megumi Kasai ◽  
Hanako Shimura ◽  
Chikara Masuta

Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Science ◽  
2015 ◽  
Vol 348 (6230) ◽  
pp. 120-123 ◽  
Author(s):  
Xinyan Zhang ◽  
Ying Zhu ◽  
Xiaodan Liu ◽  
Xinyu Hong ◽  
Yang Xu ◽  
...  

Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5′-3′ and 3′-5′ cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.


1998 ◽  
Vol 9 (4) ◽  
pp. 931-943 ◽  
Author(s):  
Françoise Ruiz ◽  
Laurence Vayssié ◽  
Catherine Klotz ◽  
Linda Sperling ◽  
Luisa Madeddu

Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for allParamecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant.


2007 ◽  
Vol 20 (6) ◽  
pp. 609-618 ◽  
Author(s):  
Daniela Pignatta ◽  
Pavan Kumar ◽  
Massimo Turina ◽  
Abhaya Dandekar ◽  
Bryce W. Falk

Tomato bushy stunt virus (TBSV) coat protein (CP) replacement vectors have been used previously to silence transgenes (e.g., the green fluorescent protein gene) but have not been effective for silencing endogenous plant genes. New TBSV vectors which retained the CP gene were developed by engineering an XhoI restriction site in three positions (3f, CEB, and CEA) of the pTBSV-100 infectious clone. Magnesium chelatase (ChlH) and phytoene desaturase (PDS) were chosen as targets for endogenous gene silencing. Initial experiments using CP replacement vectors with a 230-bp sense or antisense ChlH insert gave a silencing phenotype prominent only in the first new leaves above those inoculated. No silencing phenotype was apparent beyond these leaves whereas, for PDS, no silencing phenotype was observed. When plants were inoculated with the XhoI insert vectors containing ChlH and PDS sequences, plants showed a silencing phenotype extensively throughout the challenged plant, indicating an improved ability for virus movement and silencing in Nicotiana benthamiana host plants. Silencing efficiencies were quantified using real-time reverse-transcription polymerase chain reaction, indicating specific silencing effects of each individual silencing vector. Only one recombinant vector (pPD-3f5), where the XhoI insert was at the 3′ end of the CP gene, failed to give effective silencing. Here, we show that our new CP-retaining TBSV vectors (CEA-CEB) form typical TBSV virions, retain silencing inserts of variable lengths (110 to 260 nucleotides), and can systemically silence endogenous genes in N. benthamiana.


2012 ◽  
Vol 158 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Jenny K.W. Lam ◽  
Wanling Liang ◽  
Yun Lan ◽  
Poulami Chaudhuri ◽  
Michael Y.T. Chow ◽  
...  

2016 ◽  
Vol 161 (9) ◽  
pp. 2387-2393 ◽  
Author(s):  
Enikő Oláh ◽  
Réka Pesti ◽  
Dénes Taller ◽  
Zoltán Havelda ◽  
Éva Várallyay

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 521-531 ◽  
Author(s):  
Stéphanie Robin ◽  
Séverine Chambeyron ◽  
Alain Bucheton ◽  
Isabelle Busseau

AbstractSeveral studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent genesilencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing.


Sign in / Sign up

Export Citation Format

Share Document