Faculty Opinions recommendation of ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo.

Author(s):  
Richard Hardy
2010 ◽  
Vol 207 (3) ◽  
pp. 623-635 ◽  
Author(s):  
David R. Gibb ◽  
Mohey El Shikh ◽  
Dae-Joong Kang ◽  
Warren J. Rowe ◽  
Rania El Sayed ◽  
...  

The proteolytic activity of a disintegrin and metalloproteinase 10 (ADAM10) regulates cell-fate decisions in Drosophila and mouse embryos. However, in utero lethality of ADAM10−/− mice has prevented examination of ADAM10 cleavage events in lymphocytes. To investigate their role in B cell development, we generated B cell–specific ADAM10 knockout mice. Intriguingly, deletion of ADAM10 prevented development of the entire marginal zone B cell (MZB) lineage. Additionally, cleavage of the low affinity IgE receptor, CD23, was profoundly impaired, but subsequent experiments demonstrated that ADAM10 regulates CD23 cleavage and MZB development by independent mechanisms. Development of MZBs is dependent on Notch2 signaling, which requires proteolysis of the Notch2 receptor by a previously unidentified proteinase. Further experiments revealed that Notch2 signaling is severely impaired in ADAM10-null B cells. Thus, ADAM10 critically regulates MZB development by initiating Notch2 signaling. This study identifies ADAM10 as the in vivo CD23 sheddase and an important regulator of B cell development. Moreover, it has important implications for the treatment of numerous CD23- and Notch-mediated pathologies, ranging from allergy to cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 566-566
Author(s):  
Fortunato Zaffino ◽  
Paolo Macaccaro ◽  
Alessandro Casellato ◽  
Elisa Mandato ◽  
Sabrina Manni ◽  
...  

Abstract Background. Serine-threonine protein kinase CK2 has been recently involved in the pathogenesis of B-cell tumors, such as B acute lymphoblastic leukemia, B chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma. CK2 acts through a “non-oncogene” addiction mechanism to propel tumor growth, protecting from apoptosis by a phosphorylation-dependent “shielding” mechanism of pro-survival molecules and stimulating oncogenic kinases by helping folding and enzymatic activity. In addition, CK2 has been shown to enhance the transactivation potential of several transcription factors, such as STAT3, NF-κB and c-Myc. The existing data on CK2 function in B cell tumors suggest that this kinase might act as a “hub” downstream signals from surface membrane molecules, like the B-cell (BCR), growth factor and cytokine receptors, as well as from cell-intrinsic pathways – like proteotoxic and DNA-damage-related stress cascades. Aims and methods. To gain insights into the role of CK2 in B-lymphopoiesis and, consequently, in B-cell tumors, we generated CK2β conditional knockout (KO) mice in B-cells by crossing Csnk2β-Flox/Flox mice with CD19-CRE transgenic mice. Results. CK2 kinase activity was decreased in Csnk2β KO B cells. In the bone marrow (BM), Csnk2β KO mice displayed a reduction of B-cells, especially of the B220high IgMint-high recirculating population of transitional and follicular (FO) B cells. Pro-B and pre-B-cell progenitors were slightly reduced in number. In peripheral blood, lymph-nodes, spleen and peritoneal cavity the number of B-cells was markedly reduced. Csnk2β KO mice had lower levels of all the immunoglobulin classes in the serum. The splenic IgDlow IgMhigh B-cell subset was increased whereas the IgDhigh IgMint-low population was decreased. An imbalance between the amount of FO and marginal zone (MZ) B-cells was found with an absolute reduction of FO B cells by approximately 2-folds and an increase of MZ B-cells and MZB cell precursors by up to three folds, on average. Histological and immunofluorescence (IF) analysis revealed a change of size/shape of spleen follicles and a significant expansion of the inter-follicular, marginal zone areas, which appeared to invade the follicle with larger cells. In vitro class-switch recombination assays demonstrated impairment in IgG1 and IgG3 class-switch and a marked reduction of the generation of antibody-producing cells. Anti-IgM stimulation was uncoupled to Ca++ mobilization, indicating a disrupted transmission of the signal from the BCR to the release of Ca++ stores in the endoplasmic reticulum. In vivo sheep red blood cells (SRBC) treatment (T-cell dependent response) showed a conserved up-regulation of GC markers, such as CD38, GL7 and PNA. Nonetheless, the architecture of the reactive follicles was found markedly changed. The analysis of FO, GC and MZ-associated genes showed normal levels of Bcl6, elevated levels of Lrf mRNA and, more significantly, a marked up-regulation of Notch2 target genes, such as Hes1 and Deltex1, in Csnk2β KO B cells. In vivo Notch2 blockage with neutralizing antibodies markedly reduced the MZB cell number in Csnk2β KO mice, indicating a Notch2-dependent MZB expansion associated with Csnk2β loss. High throughput RNAseq analysis was also performed and revealed significant alteration in FOB and MZB-regulating pathways. Conclusions. Here, we found that the β subunit of protein kinase CK2 is a novel regulator of peripheral B cell differentiation. CK2β sustains a proper BCR signal, controls the GC reaction and negatively regulates Notch2 signaling, acting as a master regulator of follicular/marginal zone architecture and terminal homeostasis of FOB and MZB cells. On one side our data enrich the knowledge on the mechanisms regulating B cell development, on the other side they inform about the potential mechanisms altered by CK2 during B-cell tumorigenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4627-4636 ◽  
Author(s):  
Yuhong Chen ◽  
Mei Yu ◽  
Andrew Podd ◽  
Renren Wen ◽  
Magdalena Chrzanowska-Wodnicka ◽  
...  

Abstract B-cell development is orchestrated by complex signaling networks. Rap1 is a member of the Ras superfamily of small GTP-binding proteins and has 2 isoforms, Rap1a and Rap1b. Although Rap1 has been suggested to have an important role in a variety of cellular processes, no direct evidence demonstrates a role for Rap1 in B-cell biology. In this study, we found that Rap1b was the dominant isoform of Rap1 in B cells. We discovered that Rap1b deficiency in mice barely affected early development of B cells but markedly reduced marginal zone (MZ) B cells in the spleen and mature B cells in peripheral and mucosal lymph nodes. Rap1b-deficient B cells displayed normal survival and proliferation in vivo and in vitro. However, Rap1b-deficient B cells had impaired adhesion and reduced chemotaxis in vitro, and lessened homing to lymph nodes in vivo. Furthermore, we found that Rap1b deficiency had no marked effect on LPS-, BCR-, or SDF-1–induced activation of mitogen-activated protein kinases and AKT but clearly impaired SDF-1–mediated activation of Pyk-2, a key regulator of SDF-1–mediated B-cell migration. Thus, we have discovered a critical and distinct role of Rap1b in mature B-cell trafficking and development of MZ B cells.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 3966-3974 ◽  
Author(s):  
Lisa S. Westerberg ◽  
Carin Dahlberg ◽  
Marisa Baptista ◽  
Christopher J. Moran ◽  
Cynthia Detre ◽  
...  

Abstract The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)–Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell–independent antigen TNP-Ficoll and to the T cell–dependent antigen TNP–keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function.


2010 ◽  
Vol 188 (4) ◽  
pp. i8-i8
Author(s):  
David R. Gibb ◽  
Mohey El Shikh ◽  
Dae-Joong Kang ◽  
Warren J. Rowe ◽  
Rania El Sayed ◽  
...  

2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


2001 ◽  
Vol 194 (11) ◽  
pp. 1583-1596 ◽  
Author(s):  
Gregory Bannish ◽  
Ezequiel M. Fuentes-Pananá ◽  
John C. Cambier ◽  
Warren S. Pear ◽  
John G. Monroe

Signal transduction through the B cell antigen receptor (BCR) is determined by a balance of positive and negative regulators. This balance is shifted by aggregation that results from binding to extracellular ligand. Aggregation of the BCR is necessary for eliciting negative selection or activation by BCR-expressing B cells. However, ligand-independent signaling through intermediate and mature forms of the BCR has been postulated to regulate B cell development and peripheral homeostasis. To address the importance of ligand-independent BCR signaling functions and their regulation during B cell development, we have designed a model that allows us to isolate the basal signaling functions of immunoglobulin (Ig)α/Igβ-containing BCR complexes from those that are dependent upon ligand-mediated aggregation. In vivo, we find that basal signaling is sufficient to facilitate pro-B → pre-B cell transition and to generate immature/mature peripheral B cells. The ability to generate basal signals and to drive developmental progression were both dependent on plasma membrane association of Igα/Igβ complexes and intact immunoregulatory tyrosine activation motifs (ITAM), thereby establishing a correlation between these processes. We believe that these studies are the first to directly demonstrate biologically relevant basal signaling through the BCR where the ability to interact with both conventional as well as nonconventional extracellular ligands is eliminated.


Sign in / Sign up

Export Citation Format

Share Document