scholarly journals Ligand-independent Signaling Functions for the B Lymphocyte Antigen Receptor and Their Role in Positive Selection during B Lymphopoiesis

2001 ◽  
Vol 194 (11) ◽  
pp. 1583-1596 ◽  
Author(s):  
Gregory Bannish ◽  
Ezequiel M. Fuentes-Pananá ◽  
John C. Cambier ◽  
Warren S. Pear ◽  
John G. Monroe

Signal transduction through the B cell antigen receptor (BCR) is determined by a balance of positive and negative regulators. This balance is shifted by aggregation that results from binding to extracellular ligand. Aggregation of the BCR is necessary for eliciting negative selection or activation by BCR-expressing B cells. However, ligand-independent signaling through intermediate and mature forms of the BCR has been postulated to regulate B cell development and peripheral homeostasis. To address the importance of ligand-independent BCR signaling functions and their regulation during B cell development, we have designed a model that allows us to isolate the basal signaling functions of immunoglobulin (Ig)α/Igβ-containing BCR complexes from those that are dependent upon ligand-mediated aggregation. In vivo, we find that basal signaling is sufficient to facilitate pro-B → pre-B cell transition and to generate immature/mature peripheral B cells. The ability to generate basal signals and to drive developmental progression were both dependent on plasma membrane association of Igα/Igβ complexes and intact immunoregulatory tyrosine activation motifs (ITAM), thereby establishing a correlation between these processes. We believe that these studies are the first to directly demonstrate biologically relevant basal signaling through the BCR where the ability to interact with both conventional as well as nonconventional extracellular ligands is eliminated.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1883-1883
Author(s):  
Oleg Kolupaev ◽  
Michelle West ◽  
Bruce R. Blazar ◽  
Stephen Tilley ◽  
James Coghill ◽  
...  

Abstract Background. Chronic-graft-versus-host disease (cGvHD) continues to be a major complication following allogeneic hematopoietic stem cell transplantation (HSCT). Despite significant progress, mechanisms underlying development of the pathology are yet to be fully understood. Recent studies utilizing mouse models and patient samples have demonstrated a critical role for B cells in GvHD pathogenesis. Bone marrow (BM)-derived B cells can produce auto-reactive antibodies causing tissue fibrosis and multiorgan cGvHD. Impaired B cell homeostasis in the periphery, activation due to abnormally high levels of B cell-activating factor (BAFF), increased survival of auto-reactive B cells and aberrant BCR signaling are shown to be important for disease progression in cGvHD patients. Murine models also highlighted the critical role of germinal center reactions, particularly interactions between T follicular helper (Tfh) cells and B cells for generation of auto-antibodies which are responsible for triggering immune responses and cell-mediated toxicity. A growing body of evidence has emerged highlighting the fact that BM itself is a target organ during acute GvHD (aGvHD) with recent work suggesting a role for donor CD4+ T cells in BM specific aGvHD. Our group has shown that patients with higher numbers of BM B cell precursors were less likely to develop cGvHD after allogeneic HSCT (Fedoriw et al., 2012). These observations indicate clinical relevance of impaired BM B lymphopoiesis for cGvHD development. Methods. In order to investigate the effect of cGvHD on BM B cell development, we used the well-characterized major mismatch B6 into B10.BR model of systemic cGvHD. Recipient mice were treated with cyclophosphamide on day -3 and -2, irradiated with 700 cGy on day -1, and injected with 107 T cell depleted (TCD) BM with or without total splenic T cells (0.5-1x105). Mice were monitored for 30 days, and BM and spleen was harvested and analyzed using flow cytometry. Results. Consistent with patient data, we observed a decrease in the frequency and number of donor-derived uncommitted common lymphoid progenitors (CLP) and B cell progenitors in the BM+ allogeneic T cells group (CLP: 0.17±0.03% vs. 0.06±0.01%, p <0.01; pro B: 2.2 ± 0.5% vs. 0.7 ± 0.3%, p<0.05; pre B: 15.3±1.8% vs. 6.3±2.4%, p<0.05; immature B cells: 5.7±0.7% vs. 2.1±0.7%, p<0.01) (Fig.1). As previously reported for this model, we also found a decrease in the frequency of follicular (FO) B cells (Flynn et al., 2014). We hypothesized that during cGvHD the B cell progenitor BM niche is affected by donor CD4+ T cells leading to impaired B lymphopoiesis. Bone marrow from BM+T cell animals had a significantly higher frequency of CD4+ cells compared to the control group (0.45±0.06% vs. 0.2±0.02%). Depletion of CD4+ T cells using anti-CD4 antibody during the first two weeks after transplant improved pathology scores and prevented weight loss in BM+T cells mice. We also observedpartial recovery of B cell progenitors and Lin-CD45-CD31-CD51+ osteoblasts (OB) in animals treated with anti-CD4 antibodies (pre B 3.5±1.1% vs. 20.4±4.5%, p<0.05; immature B: 1.9±0.9% vs. 3.5±0.3%; OB: 0.8±0.1% vs.1.2±0.2%). A recent study showed that activation and proliferation of conventional T cells in aGvHD model can be prevented by in vivo expansion of regulatory T cells (Tregs) using αDR3 antibody (4C12). We adopted this approach to determine whether Tregs can suppress the cytotoxic effect of donor CD4+ T cells in BM in cGvHD model. Animals that received T cells from 4C12-treated donors had an increase in survival and lower cGvHD pathology scores. These mice also had higher frequency of pro B, pre B, and immature B cells compared to the mice infused with T cells from isotype-treated donors. Conclusions. These studies demonstrate that BM development of B lymphocytes is impaired in a mouse model of systemic cGvHD. Our data suggests that donor-derived CD4+ T cells are involved in the destruction of hematopoietic niches in BM, particularly OB, which support B lymphopoiesis. Moreover, depletion of CD4+ T cells and infusion with in vivo expanded Tregs reduced the severity of cGvHD. Thus, Treg therapy in patients with cGvHD may be important for BM B cell development, and improvement of clinical outcomes. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


2018 ◽  
Vol 19 (9) ◽  
pp. 2522 ◽  
Author(s):  
Hirotake Kasai ◽  
Taku Kuwabara ◽  
Yukihide Matsui ◽  
Koichi Nakajima ◽  
Motonari Kondo

Interleukin-7 (IL-7) is essential for lymphocyte development. To identify the functional subdomains in the cytoplasmic tail of the IL-7 receptor (IL-7R) α chain, here, we constructed a series of IL-7Rα deletion mutants. We found that IL-7Rα-deficient hematopoietic progenitor cells (HPCs) gave rise to B cells both in vitro and in vivo when a wild-type (WT) IL-7Rα chain was introduced; however, no B cells were observed under the same conditions from IL-7Rα-deficient HPCs with introduction of the exogenous IL-7Rα subunit, which lacked the amino acid region at positions 414–441 (d414–441 mutant). Signal transducer and activator of transcription 5 (STAT5) was phosphorylated in cells with the d414–441 mutant, similar to that in WT cells, in response to IL-7 stimulation. In contrast, more truncated STAT5 (tSTAT5) was generated in cells with the d414–441 mutant than in WT cells. Additionally, the introduction of exogenous tSTAT5 blocked B lymphopoiesis but not myeloid cell development from WT HPCs in vivo. These results suggested that amino acids 414–441 in the IL-7Rα chain formed a critical subdomain necessary for the supportive roles of IL-7 in B-cell development.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1788-1788
Author(s):  
Nagisa Sakurai ◽  
Manami Maeda ◽  
Sung-UK Lee ◽  
Julie Teruya-Feldstein ◽  
Takahiro Maeda

Abstract LRF (Leukemia/Lymphoma Related Factor, also known as Pokemon, FBI-1, OCZF and ZBTB7a) was originally identified as an interaction partner of the oncoprotein BCL6. LRF can act as a proto-oncogene by repressing the tumor suppressor ARF and cooperates with BCL6 in MEF (mouse embryonic fibroblasts) immortalization. It is highly expressed in human Non-Hodgkin Lymphoma (NHL) cases, in the pathogenesis of which BCL6 is known to be involved (Maeda et al. Nature 2005). Inducible inactivation of the LRF gene in mouse Hematopoietic Stem Cells (HSCs) results in complete block of early B cell development at the HSC/progenitor stages and concomitant development of double positive (DP) T cells in the bone marrow (BM) (Maeda et al. Science 2007). While these findings clearly illustrate key roles of LRF in normal and malignant B cell development, it is not fully identified as to which B cell stages LRF is required during normal B cell development. To elucidate the role of LRF in B cells in vivo, we established and characterized B cell-specific LRF conditional knockout (KO) mice. We took advantage of mb-1 Cre knock-in mice, in which Cre expression is restricted to the B cells after the ProB cell stage. B cell compartments in the BM (PreProB, ProB, PreB and immatureB) are grossly normal in LRFF/ Fmb1-Cre mice. The LRF gene was efficiently eliminated in BM CD19+ B cells revealed by quantitative real-time PCR assay. Furthermore, LRF protein was not detected in purified CD19+ B cells, but seen in CD19-non-B cells, confirming the specific inactivation of the LRF gene in B cells. Thus, despite its critical role at the HSC/progenitor stages, LRF was found to be dispensable for the survival of normal BM B cells. These findings are consistent with the fact that GSI treatment (Maeda et al. Science 2007) or Notch1 loss (Lee and Maeda, unpublished) rescues the defects in early B cell development seen in LRFF/FMx1-Cre+ mice. Notch signaling is necessary for the transitional B cells to commit to the marginal zone B cells (MZB). Inactivation of the component of the Notch pathways in mice results in no MZB development. On the contrary, deletion of the MINT/SHARP gene, a suppressor of Notch signaling, leads to increase of MZB cells and concomitant reduction of follicular B (FOB) cells, indicating that Notch induces MZB cell fate at the transitional B cell stage. Given that LRF is a potent Notch suppressor at the HSC/progenitor stages, we hypothesized that LRF opposes Notch pathway in mature B cells as well. To test this hypothesis, we characterized mature B cell development in LRFF/Fmb1-Cre mice. While transitional B cells were largely unaffected in LRFF/Fmb1-Cre mice, we observed a slight but statistically significant reduction of follicular (FO) B cells (B220+CD19+AA4.1-CD1d-CD23+) and concomitant increase of MZB cells (B220+CD19+AA4.1-CD1d+CD23-) as seen in MINT/SHARP knockout mice. Thus, LRF may also oppose Notch pathways at the branching point for the FOB vs. MZB fate decision. Finally, to determine the role of LRF in Germinal Center (GC) formation in vivo, we characterized secondary lymphoid organs of LRFF/Fmb1-Cre mice after antigen stimulation. Both spleen and Peyer’s Patches were analyzed two weeks after immunization with Chicken Gamma Globulin (NP-CGG). While a GC reaction was robustly induced in control mice upon immunization, GC formation was significantly impaired in LRFF/Fmb1-Cre mice as revealed by immuno-histochemical analysis (IHC) and FACS. Only few GC cells (B220+CD19+FAS+CD38-PNA+) were observed in spleens, and the absolute numbers of GC cells were drastically reduced in LRFF/Fmb1-Cre mice. Residual LRF-deficient GC B cells were mostly negative for CXCR4, which is predominantly expressed in proliferating centroblasts within GCs, suggesting that LRF-deficient GC B cells may have defects in cellular proliferation in response to antigen stimuli. Our data indicates that LRF plays key roles in mature B cell development in the secondary lymphoid organs, but dispensable for the maintenance of early BM B cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 855-855 ◽  
Author(s):  
Mutlu Kartal-Kaess ◽  
Luisa Cimmino ◽  
Simona Infantino ◽  
Mehmet Yabas ◽  
Jian-Guo Zhang ◽  
...  

Abstract Abstract 855 The cAMP signaling pathway has emerged as a key regulator of hematopoietic cell proliferation, differentiation, and apoptosis. Signal specificity is achieved through local activation of signaling enzymes that are anchored to subcellular organelles and membranes. In particular, A-kinase anchoring proteins (AKAPs) coordinate and control cAMP responsive events. AKAPs were originally classified based on their ability to bind cAMP-dependent protein kinase (protein kinase A; PKA). The activity of PKA is regulated by its two regulatory subunits, which from a dimer that binds to the two catalytic subunits. Binding of cAMP to the regulatory dimer dissociates the catalytic subunits and activates PKA. Anchoring of PKA by AKAPs constrains PKA activity to a relevant subset of potential substrates. Thus, AKAPs contribute to the precision of intracellular signaling events by directing anchored enzyme pools to a subset of their physiological substrates at specific subcellular localizations. Using an in vitro short hairpin RNA (shRNA) screen against potentially druggable targets, we have uncovered a requirement for AKAP12 in the proliferation of a cultured pre-B cell leukemia cell line. In the hematopoietic system of mice and humans, expression of AKAP12 is tightly restricted to the pro/pre/immature stages of B lymphopoiesis, suggesting a potential role in pre-B cell receptor (pre-BCR) or BCR signaling. We find that retroviral knockdown or germline knockout of AKAP12 in mice leads to an increase in pre B and immature B cells in the bone marrow. In contrast, B cell numbers in the spleen are significantly reduced, as are recirculating B cells in the bone marrow. Transplantation of AKAP12 null hematopoietic stem and progenitor cells from fetal liver into wildtype recipients demonstrates an autonomous defect in the development of AKAP12−/− B cells. Competitive bone marrow transplantations confirm that this defect is cell autonomous and not due to a defective bone marrow environment or secretion of a B cell inhibitory factor. To identify AKAP12 interaction partners, we overexpressed FLAG-epitope tagged AKAP12 in a pre-B cell leukemia cell line. Affinity purification of AKAP12 showed a repeated co-immunoprecipitation of poorly characterized RIO kinase 1 (RIOK1). Our current efforts are focused on investigating the interaction between RIOK1 and AKAP12 and their role in the control of B cell development and cell cycle progression. Further, we are focusing on a likely role for AKAP12 in the scaffolding of PKA, PKC and phosphodiesterases by analyzing the activation of signaling cascades in cultured primary wildtype and AKAP12−/− pre B cells. Additionally, we are investigating the role of the BCR in vivo by testing if enforced expression of BCR components rescue B cell development in a AKAP12−/− BCR transgenic mouse model (SWHEL mouse). In summary, we have confirmed a novel role for AKAP12 in B lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 196 (5) ◽  
pp. 705-711 ◽  
Author(s):  
Juli P. Miller ◽  
David Izon ◽  
William DeMuth ◽  
Rachel Gerstein ◽  
Avinash Bhandoola ◽  
...  

Little is known about the signals that promote early B lineage differentiation from common lymphoid progenitors (CLPs). Using a stromal-free culture system, we show that interleukin (IL)-7 is sufficient to promote the in vitro differentiation of CLPs into B220+ CD19+ B lineage progenitors. Consistent with current models of early B cell development, surface expression of B220 was initiated before CD19 and was accompanied by the loss of T lineage potential. To address whether IL-7 receptor (R) activity is essential for early B lineage development in vivo, we examined the frequencies of CLPs and downstream pre–pro- and pro-B cells in adult mice lacking either the α chain or the common gamma chain (γc) of the IL-7R. The data indicate that although γc−/− mice have normal frequencies of CLPs, both γc−/− and IL-7Rα−/− mice lack detectable numbers of all downstream early B lineage precursors, including pre–pro-B cells. These findings challenge previous notions regarding the point in B cell development affected by the loss of IL-7R signaling and suggest that IL-7 plays a key and requisite role during the earliest phases of B cell development.


2001 ◽  
Vol 193 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Tsuneyasu Kaisho ◽  
Kiyoshi Takeda ◽  
Tohru Tsujimura ◽  
Taro Kawai ◽  
Fumiko Nomura ◽  
...  

IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.


1994 ◽  
Vol 14 (6) ◽  
pp. 3884-3894
Author(s):  
L J Zhou ◽  
H M Smith ◽  
T J Waldschmidt ◽  
R Schwarting ◽  
J Daley ◽  
...  

CD19 is a B-cell-specific member of the immunoglobulin superfamily expressed from early pre-B-cell development until plasma cell differentiation. In vitro studies demonstrate that the CD19 signal transduction molecule can serve as a costimulatory molecule for activation through other B-lymphocyte cell surface molecules. However, much remains to be known regarding how CD19 functions in vivo and whether CD19 has different roles at particular stages of B-cell differentiation. Therefore, transgenic mice overexpressing the human CD19 (hCD19) gene were generated to determine whether this transgene would be expressed in a B-lineage-specific fashion and to dissect the in vivo role of CD19 in B-cell development and activation. Expression of the human transgene product was specifically restricted to all B-lineage cells and appeared early in development as occurs with hCD19. In addition, expression of hCD19 severely impaired the development of immature B cells in the bone marrow, with dramatically fewer B cells found in the spleen, peripheral circulation, and peritoneal cavity. The level of hCD19 expressed on the cell surface correlated directly with the severity of the defect in different transgenic lines. These results demonstrate that the hCD19 gene is expressed in a lineage-specific fashion in mice, indicating that the hCD19 gene may be useful for mediating B-lineage-specific expression of other transgene products. In addition, these results indicate an important role for the lineage-specific CD19 molecule during early B-cell development before antigen-dependent activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1535-1535
Author(s):  
Davide F. Robbiani ◽  
Kaity Colon ◽  
Kruti Naik ◽  
Helen Nickerson ◽  
Maurizio Affer ◽  
...  

Abstract The B-Cell Lymphoma 6 (BCL6) gene encodes for a zinc finger motifs containing transcriptional repressor that is frequently dysregulated by chromosomal translocations in germinal center lymphomas. A putative protooncogene, its transforming ability in vivo was reported in I-mu-HA-BCL6 knock-in mice by Cattoretti et al last year. We also tested this assumption in transgenic mice expressing BCL6 in B cells under the control of kappa light chain regulatory elements. We replaced the murine C-kappa locus with the 16kb human BCL6 genomic locus in a construct containing the murine kappa light chain regulatory elements (Vk, EiK, 3′RR). While control transgenics were readily obtained (5/32 founders), only 3/68 founders were positive for the BCL6 transgene, of which only one (bearing a single copy of the transgene) was able to transmit the transgene to its progeny, thus suggesting embryonal toxicity of exogenous BCL6. In the bone marrow, flow cytometry revealed a nearly complete block of B cell development at the pro-B to pre-B transition. This was also the stage at which we first detected expression of EGFP in control reporter mice that were generated in parallel. Spleens of transgenic mice weighed about 50% of control spleens and less than 5% of splenocytes were CD19+ B cells. These were IgM high, IgD intermediate, corresponding to an immature B cell phenotype. Lymph nodes were smaller and B cells barely detected. Peyers’ patches were not visible. Combined, our analysis of 6–8 weeks old VkHABCL6 transgenic mice reveals that enforced expression of BCL6 early in development results in a profound block of B lymphocyte differentiation. How transgenic BCL6 modulates this effect at the transcriptional level remains to be investigated. To test the oncogenic potential of BCL6 in B cells, it will be interesting to precisely turn on this gene in the germinal center.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1533-1533
Author(s):  
David T Yang ◽  
Shelly Wuerzberger-Davis ◽  
Yuhong Chen ◽  
Mei Yu ◽  
Hu Zeng ◽  
...  

Abstract Activity of the nuclear factor-κB (NF-κB) family of transcription factors is tightly regulated by its inhibitor, IκBα, through cytoplasmic localization of latent NF-κB: IκBα complexes. This arrangement is essential for efficient signal-inducible activation and regulation of biologic functions. Maintenance of cytoplasmic localization of latent NF-κB: IκBα complex requires continuous nuclear export that is dependent on the N-terminal nuclear export sequence (N-NES) of IκBα. While these mechanisms have been elucidated through in vitro studies, the biological significance of this “nucleocytoplasmic shuttling” has yet to be evaluated in vivo. To address this, we derived mice harboring germ-line M45A, L48A, and I52A amino acid substitutions in the N-NES of IκBα. In splenic B-cells, the disrupted N-NES caused constitutive nuclear accumulation of IκBα and inactive c-Rel containing complexes but surprisingly not IκBα: p65 complexes. Since p65 contains a NES sequence and c-Rel does not, nuclear export of N-NES mutant IκBα:NF-κB complexes appear to be NF-κB family member dependent. Functionally, NF-κB activity in splenic B-cells after stimulation with IgM or LPS was clearly reduced in the mutants compared to wild-type by electrophoretic mobility shift assay. B-cell development in the bone marrow of mice harboring the mutation was impaired, showing a preponderance of pro/pre B-cells and few mature B-cells compared to their wild type littermates (p &lt; 0.001). Concordantly, there were significantly fewer B-cells in the spleen (p &lt; 0.05) and lymph nodes (p &lt; 0.01) of the mutant mice. Additionally, populations of T2, follicular (FO), and marginal zone (MZ) B-cells, which represent mature B-cells in the spleen, were also reduced in the mutant mice (p &lt; 0.001). To demonstrate that this B-cell maturation defect in IκBα mutant mice was B-cell intrinsic, sublethally irradiated Jak3-deficient mice were transplanted with BM from either wild-type or mutant mice. B-cell development in mice transplanted with mutant donors was impaired relative to those with wild-type donors in a fashion identical to that of the primary mutants described above. Finally, severe phenotypes in inguinal lymph nodes and Peyer’s patch development were present, with mutant mice frequently lacking these secondary organs/tissues, the underlying mechanisms of which are currently being investigated. In conclusion, our findings uncover an in vivo mechanism controlling NF-κB localization and its essential role in the generation of mature B-cells and certain secondary lymphoid organs.


Sign in / Sign up

Export Citation Format

Share Document