scholarly journals Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function

Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 3966-3974 ◽  
Author(s):  
Lisa S. Westerberg ◽  
Carin Dahlberg ◽  
Marisa Baptista ◽  
Christopher J. Moran ◽  
Cynthia Detre ◽  
...  

Abstract The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)–Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell–independent antigen TNP-Ficoll and to the T cell–dependent antigen TNP–keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function.

2001 ◽  
Vol 193 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Tsuneyasu Kaisho ◽  
Kiyoshi Takeda ◽  
Tohru Tsujimura ◽  
Taro Kawai ◽  
Fumiko Nomura ◽  
...  

IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1533-1533
Author(s):  
David T Yang ◽  
Shelly Wuerzberger-Davis ◽  
Yuhong Chen ◽  
Mei Yu ◽  
Hu Zeng ◽  
...  

Abstract Activity of the nuclear factor-κB (NF-κB) family of transcription factors is tightly regulated by its inhibitor, IκBα, through cytoplasmic localization of latent NF-κB: IκBα complexes. This arrangement is essential for efficient signal-inducible activation and regulation of biologic functions. Maintenance of cytoplasmic localization of latent NF-κB: IκBα complex requires continuous nuclear export that is dependent on the N-terminal nuclear export sequence (N-NES) of IκBα. While these mechanisms have been elucidated through in vitro studies, the biological significance of this “nucleocytoplasmic shuttling” has yet to be evaluated in vivo. To address this, we derived mice harboring germ-line M45A, L48A, and I52A amino acid substitutions in the N-NES of IκBα. In splenic B-cells, the disrupted N-NES caused constitutive nuclear accumulation of IκBα and inactive c-Rel containing complexes but surprisingly not IκBα: p65 complexes. Since p65 contains a NES sequence and c-Rel does not, nuclear export of N-NES mutant IκBα:NF-κB complexes appear to be NF-κB family member dependent. Functionally, NF-κB activity in splenic B-cells after stimulation with IgM or LPS was clearly reduced in the mutants compared to wild-type by electrophoretic mobility shift assay. B-cell development in the bone marrow of mice harboring the mutation was impaired, showing a preponderance of pro/pre B-cells and few mature B-cells compared to their wild type littermates (p < 0.001). Concordantly, there were significantly fewer B-cells in the spleen (p < 0.05) and lymph nodes (p < 0.01) of the mutant mice. Additionally, populations of T2, follicular (FO), and marginal zone (MZ) B-cells, which represent mature B-cells in the spleen, were also reduced in the mutant mice (p < 0.001). To demonstrate that this B-cell maturation defect in IκBα mutant mice was B-cell intrinsic, sublethally irradiated Jak3-deficient mice were transplanted with BM from either wild-type or mutant mice. B-cell development in mice transplanted with mutant donors was impaired relative to those with wild-type donors in a fashion identical to that of the primary mutants described above. Finally, severe phenotypes in inguinal lymph nodes and Peyer’s patch development were present, with mutant mice frequently lacking these secondary organs/tissues, the underlying mechanisms of which are currently being investigated. In conclusion, our findings uncover an in vivo mechanism controlling NF-κB localization and its essential role in the generation of mature B-cells and certain secondary lymphoid organs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 282-282
Author(s):  
Shuangmin Zhang ◽  
Yi Zheng ◽  
Richard Lang ◽  
Fukun Guo

Abstract Abstract 282 RhoA GTPase is an intracellular signal transducer capable of regulating a wide range of cell functions including cytoskeleton dynamics, proliferation, and survival. In lymphocytes, studies by using dominant negative mutant or C3 transferase expressing transgenic mice suggest that RhoA is involved in TCR and BCR signaling and related T cell functions such as polarization, migration, survival, and proliferation. To date, the physiological role of RhoA in lymphocyte development remains unclear. In this study, we have achieved T cell, B cell, and hematopoietic stem cell-specific deletion of RhoA by conditional gene targeting with CD2, CD19 and Mx1 promoter-driven Cre expression, respectively, in the RhoAloxP/loxP mice. First, we found that RhoA gene disruption in early T cells caused a drastic decrease in thymocyte cellularity, with the numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), CD4+CD8− single positive (SP), and CD4−CD8+ SP T cells decreased by 88.8% ± 6.0%, 99.4% ± 1.0%, 99.3% ± 1.2%, and 98.6% ± 2.0%, respectively. Among DN subpopulations, CD44+CD25− (DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3), and CD44−CD25− (DN4) cells were reduced by 91.7% ± 6.0%, 54.9% ± 27.7%, 50.9% ± 33.3%, and 96.7% ± 3.4%, respectively. Further, RhoA knockout led to a significant loss of DP thymocytes at the initial stage (CD69highTCRint) of positive selection, suggesting that RhoA is required for positive selection. The decreased thymocyte cellularity in mutant mice is associated with increased apoptosis of all thymic T lineages. RhoA deficiency also resulted in a perturbation in thymocyte cell cycle progression as manifested by increased BrdU incorporation in DN1 and DN2 cells and decreased BrdU incorporation in DN4 and DP cells. Concomitantly, RhoA-deficient thymocytes showed a 59.8% ± 26.3% reduction in proliferative potential in response to TCR crosslinking. Western blot analysis revealed that the activities of ZAP70, LAT, Akt, Erk, and p38 were impaired in RhoA-/- thymocytes. In periphery, spleens of the RhoA null mice contained 7.4% ± 8.0% of CD4+ T cells and 3.7% ± 2.7% of CD8+ T cells compared with that of wild type (WT) mice. Loss of peripheral mature T cells in mutant mice is reflected by a marked reduction of naive T cells, whereas effector and memory phenotype cells were marginally affected by RhoA deficiency. RhoA-deficient naïve T cells were more susceptible to apoptosis, suggesting that homeostatic defect of naïve T cells in RhoA-/- mice is attributed to impaired cell survival. Abrogation of RhoA caused an increased in vivo BrdU incorporation in naïve T cell compartments. Thus, RhoA deficiency induces naïve T cell homeostatic proliferation, possibly due to a compensatory effect of lymphopenia. In contrast to that in thymocytes, Erk was constitutively activated in RhoA-deficient splenic T cells. These observations implicate RhoA in the multiple stages of T cell development and the proper assembly of early TCR signaling complex. Second, deletion of RhoA in pre-proB cells had no effect on early B cell development in bone marrow but significantly inhibited late B cell development in spleen, resulting in 78.2% ± 13.6%, 78.6% ± 16.9%, and 93.2% ± 3.4% reduction in transitional, follicular, and marginal zone B cells, respectively. Plasma cells in spleen were decreased by 50.9 % ± 25.9% in RhoA null mice. However, we did not detect any changes in survival of in vivo RhoA-/- B cells or RhoA-/- B cells cultured in vitro with survival factor BAFF. Distinct from previously characterized Cdc42 knockout mice, BAFF-R expression was not altered in RhoA-/- B cells. Moreover, RhoA-/- B cells appeared to be normal in proliferation and Akt and Erk activation in response to BCR crosslinking. These data suggest that RhoA is important for late B cell development through regulation of differentiation but not cell survival or proliferation. Finally, deletion of RhoA from hematopoietic stem cells did not affect common lymphoid progenitor production, indicating that RhoA is not required for early lymphoid progenitor commitment. Taken together, these lineage-specific mouse genetic studies demonstrate that RhoA critically regulates T and B cell development by distinct cellular mechanisms at multiple stages of lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 566-566
Author(s):  
Fortunato Zaffino ◽  
Paolo Macaccaro ◽  
Alessandro Casellato ◽  
Elisa Mandato ◽  
Sabrina Manni ◽  
...  

Abstract Background. Serine-threonine protein kinase CK2 has been recently involved in the pathogenesis of B-cell tumors, such as B acute lymphoblastic leukemia, B chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma. CK2 acts through a “non-oncogene” addiction mechanism to propel tumor growth, protecting from apoptosis by a phosphorylation-dependent “shielding” mechanism of pro-survival molecules and stimulating oncogenic kinases by helping folding and enzymatic activity. In addition, CK2 has been shown to enhance the transactivation potential of several transcription factors, such as STAT3, NF-κB and c-Myc. The existing data on CK2 function in B cell tumors suggest that this kinase might act as a “hub” downstream signals from surface membrane molecules, like the B-cell (BCR), growth factor and cytokine receptors, as well as from cell-intrinsic pathways – like proteotoxic and DNA-damage-related stress cascades. Aims and methods. To gain insights into the role of CK2 in B-lymphopoiesis and, consequently, in B-cell tumors, we generated CK2β conditional knockout (KO) mice in B-cells by crossing Csnk2β-Flox/Flox mice with CD19-CRE transgenic mice. Results. CK2 kinase activity was decreased in Csnk2β KO B cells. In the bone marrow (BM), Csnk2β KO mice displayed a reduction of B-cells, especially of the B220high IgMint-high recirculating population of transitional and follicular (FO) B cells. Pro-B and pre-B-cell progenitors were slightly reduced in number. In peripheral blood, lymph-nodes, spleen and peritoneal cavity the number of B-cells was markedly reduced. Csnk2β KO mice had lower levels of all the immunoglobulin classes in the serum. The splenic IgDlow IgMhigh B-cell subset was increased whereas the IgDhigh IgMint-low population was decreased. An imbalance between the amount of FO and marginal zone (MZ) B-cells was found with an absolute reduction of FO B cells by approximately 2-folds and an increase of MZ B-cells and MZB cell precursors by up to three folds, on average. Histological and immunofluorescence (IF) analysis revealed a change of size/shape of spleen follicles and a significant expansion of the inter-follicular, marginal zone areas, which appeared to invade the follicle with larger cells. In vitro class-switch recombination assays demonstrated impairment in IgG1 and IgG3 class-switch and a marked reduction of the generation of antibody-producing cells. Anti-IgM stimulation was uncoupled to Ca++ mobilization, indicating a disrupted transmission of the signal from the BCR to the release of Ca++ stores in the endoplasmic reticulum. In vivo sheep red blood cells (SRBC) treatment (T-cell dependent response) showed a conserved up-regulation of GC markers, such as CD38, GL7 and PNA. Nonetheless, the architecture of the reactive follicles was found markedly changed. The analysis of FO, GC and MZ-associated genes showed normal levels of Bcl6, elevated levels of Lrf mRNA and, more significantly, a marked up-regulation of Notch2 target genes, such as Hes1 and Deltex1, in Csnk2β KO B cells. In vivo Notch2 blockage with neutralizing antibodies markedly reduced the MZB cell number in Csnk2β KO mice, indicating a Notch2-dependent MZB expansion associated with Csnk2β loss. High throughput RNAseq analysis was also performed and revealed significant alteration in FOB and MZB-regulating pathways. Conclusions. Here, we found that the β subunit of protein kinase CK2 is a novel regulator of peripheral B cell differentiation. CK2β sustains a proper BCR signal, controls the GC reaction and negatively regulates Notch2 signaling, acting as a master regulator of follicular/marginal zone architecture and terminal homeostasis of FOB and MZB cells. On one side our data enrich the knowledge on the mechanisms regulating B cell development, on the other side they inform about the potential mechanisms altered by CK2 during B-cell tumorigenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3350-3359 ◽  
Author(s):  
Peter I. Chuang ◽  
Samantha Morefield ◽  
Chien-Ying Liu ◽  
Stephen Chen ◽  
John M. Harlan ◽  
...  

Abstract Decisions about cell survival or death are central components of adaptive immunity and occur at several levels in immune system development and function. The Bcl-2 family of homologous proteins plays an important role in these decisions in lymphoid cells. Bcl-2, Bcl-xL, and A1 are differentially expressed during B- and T-cell development, and they have shared and distinct roles in regulating cell death. We sought to gain insight into the role of A1 in immune system development and function. A murine A1-a transgene was expressed under the control of the Eμ enhancer, and mice with A1 overexpression in B- and T-cell lineages were derived. Thymocytes and early B cells in Eμ-A1 mice showed extended survival. B-lineage development was altered, with expansion of the pro–B cell subset at the expense of pre–B cells, suggesting an impairment of the pro– to pre–B-cell transition. This early B-cell phenotype resembled Eμ–Bcl-xL mice but did not preferentially rescue cells with completed V(D)J rearrangements of the immunoglobulin heavy chain. In contrast to Eμ–Bcl-2 transgenes, A1 expression in pro–B cells did not rescue pre–B-cell development in SCID mice. These studies indicate that A1 protects lymphocytes from apoptosis in vitro but that it has lineage- and stage-specific effects on lymphoid development. Comparison with the effects of Bcl-2 and Bcl-xL expressed under similar control elements supports the model that antiapoptotic Bcl-2 homologs interact differentially with intracellular pathways affecting development and apoptosis in lymphoid cells.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4627-4636 ◽  
Author(s):  
Yuhong Chen ◽  
Mei Yu ◽  
Andrew Podd ◽  
Renren Wen ◽  
Magdalena Chrzanowska-Wodnicka ◽  
...  

Abstract B-cell development is orchestrated by complex signaling networks. Rap1 is a member of the Ras superfamily of small GTP-binding proteins and has 2 isoforms, Rap1a and Rap1b. Although Rap1 has been suggested to have an important role in a variety of cellular processes, no direct evidence demonstrates a role for Rap1 in B-cell biology. In this study, we found that Rap1b was the dominant isoform of Rap1 in B cells. We discovered that Rap1b deficiency in mice barely affected early development of B cells but markedly reduced marginal zone (MZ) B cells in the spleen and mature B cells in peripheral and mucosal lymph nodes. Rap1b-deficient B cells displayed normal survival and proliferation in vivo and in vitro. However, Rap1b-deficient B cells had impaired adhesion and reduced chemotaxis in vitro, and lessened homing to lymph nodes in vivo. Furthermore, we found that Rap1b deficiency had no marked effect on LPS-, BCR-, or SDF-1–induced activation of mitogen-activated protein kinases and AKT but clearly impaired SDF-1–mediated activation of Pyk-2, a key regulator of SDF-1–mediated B-cell migration. Thus, we have discovered a critical and distinct role of Rap1b in mature B-cell trafficking and development of MZ B cells.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Shunichi Takeda ◽  
Takeyuki Shimizu ◽  
Hans-Reimer Rodewald

Abstract The receptor-type tyrosine kinase, c-kit is expressed in hematopoietic stem cells (HSC), myeloid, and lymphoid precursors. In c-kit ligand-deficient mice, absolute numbers of HSC are mildly reduced suggesting that c-kit is not essential for HSC development. However, c-kit− HSC cannot form spleen colonies or reconstitute hematopoietic functions in lethally irradiated recipient mice. Based on in in vitro experiments, a critical role of c-kit in B-cell development was suggested. Here we have investigated the B-cell development of c-kitnull mutant (W/W ) mice in vivo. Furthermore, day 13 fetal liver cells from wild type or W/W mice were transferred into immunodeficient RAG-2−/− mice. Surprisingly, transferred c-kit− cells gave rise to all stages of immature B cells in the bone marrow and subsequently to mature conventional B2, as well as B1, type B cells in the recipients to the same extent as transferred wild type cells. Hence, in contrast to important roles of c-kit in the expansion of HSC and the generation of erythroid and myeloid lineages and T-cell precursors, c-kit− HSC can colonize the recipient bone marrow and differentiate into B cells in the absence of c-kit.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lingyu Wei ◽  
Can Liu ◽  
Jia Wang ◽  
Xiang Zheng ◽  
Qiu Peng ◽  
...  

AbstractLactoferrin (Lf) is widely distributed in mammalian milk, various tissues, and their exocrine fluids and has many physiological functions, such as bacteriostasis, antivirus, and immunoregulation. Here, we provide evidence that lactoferrin is required for early stages of B cell development in mice. Lactoferrin-deficient (Lf−/−) C57BL/6 mice showed systematic reduction in total B cells, which was attributed to the arrest of early B cell development from pre-pro-B to pro-B stage. Although the Lf−/− B cell “seeds” generated greater pro-B cells comparing to wild type (WT) littermates, the Lf−/− mice bone marrow had less stromal cells, and lower CXCL12 expression, produced a less favorable “microenvironment” for early B cell development. The underlying mechanism was mediated through ERK and AKT signalings and an abnormality in the transcription factors related to early differentiation of B cells. The Lf−/− mice also displayed abnormal antibody production in T cell-dependent and T cell-independent immunization experiments. In a pristane-induced lupus model, Lf−/− mice had more serious symptoms than WT mice, whereas lactoferrin treatment alleviated these symptoms. This study demonstrates a novel role of lactoferrin in early B cell development, suggesting a potential benefit for using lactoferrin in B cell-related diseases.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1288-1294 ◽  
Author(s):  
Sang-Moo Kang ◽  
Maria Grazia Narducci ◽  
Cristina Lazzeri ◽  
Adriana M. Mongiovì ◽  
Elisabetta Caprini ◽  
...  

AbstractTCL1, the overexpression of which may result in T-cell leukemia, is normally expressed in early embryonic tissues, the ovary, and lymphoid lineage cells. Our analysis of mouse B-lineage cells indicates that Tcl1 expression is initiated in pro-B cells and persists in splenic marginal zone and follicular B cells. T-lineage Tcl1 expression begins in thymocyte progenitors, continues in CD4+CD8+ thymocytes, and is extinguished in mature T cells. In Tcl1-deficient mice, we found B lymphopoiesis to be compromised at the pre-B cell stage and T-cell lymphopoiesis to be impaired at the CD4+CD8+ thymocyte stage. A corresponding increase was observed in thymocyte susceptibility to anti-CD3ϵ–induced apoptosis. Reduced numbers of splenic follicular and germinal center B cells were accompanied by impaired production of immunoglobulin G1 (IgG1) and IgG2b antibodies in response to a T-dependent antigen. The marginal zone B cells and T-cell–independent antibody responses were also diminished in Tcl1-/- mice. This analysis indicates a significant role for Tcl1, a coactivator of Akt signaling, in normal T- and B-cell development and function.


2005 ◽  
Vol 25 (11) ◽  
pp. 4455-4465 ◽  
Author(s):  
Ying Wang ◽  
Ondrej Horvath ◽  
Andrea Hamm-Baarke ◽  
Mireille Richelme ◽  
Claude Grégoire ◽  
...  

ABSTRACT NTAL (non-T-cell activation linker, also called LAB) and LAT (linker for activation of T cells) are evolutionarily related transmembrane adaptor proteins that are phosphorylated upon immunoreceptor engagement. Using quantitative reverse transcription-PCR, both NTAL and LAT were found to be expressed in B cells. However, LAT expression was limited to early B cells, whereas NTAL expression typified mature B cells. To delineate their roles in B-cell development and function, Ntal-deficient mice were generated and crossed with Lat-deficient mice. B cells developed in Lat −/− Ntal −/− double-deficient mice and in mice lacking either of the two adaptors with the same efficiency as in wild-type mice. Upon B-cell antigen receptor cross-linking, Ntal −/− B cells exhibited slightly increased Ca2+ mobilization and proliferation. In addition, Ntal-deficient mice had increased levels of natural antibodies and slightly increased humoral response to a T-dependent antigen. Normal titers of serum-specific immunoglobulins were produced in response to a T-cell-independent antigen. Although NTAL is also expressed in plasma cells, its absence did not affect the hypergammaglobulinemia E and G1 that developed in mice with a mutation in tyrosine 136 of LAT. Therefore, NTAL does not play a role in B cells symmetric to the role played by LAT in T cells.


Sign in / Sign up

Export Citation Format

Share Document