Faculty Opinions recommendation of Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity.

Author(s):  
Tadeusz Robak ◽  
Krzysztof Jamroziak
Blood ◽  
2010 ◽  
Vol 115 (22) ◽  
pp. 4393-4402 ◽  
Author(s):  
Ekkehard Mössner ◽  
Peter Brünker ◽  
Samuel Moser ◽  
Ursula Püntener ◽  
Carla Schmidt ◽  
...  

AbstractCD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall survival in patients. Here, we report the development of GA101 as the first Fc-engineered, type II humanized IgG1 antibody against CD20. Relative to rituximab, GA101 has increased direct and immune effector cell-mediated cytotoxicity and exhibits superior activity in cellular assays and whole blood B-cell depletion assays. In human lymphoma xenograft models, GA101 exhibits superior antitumor activity, resulting in the induction of complete tumor remission and increased overall survival. In nonhuman primates, GA101 demonstrates superior B cell–depleting activity in lymphoid tissue, including in lymph nodes and spleen. Taken together, these results provide compelling evidence for the development of GA101 as a promising new therapy for the treatment of B-cell disorders.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii361-iii361
Author(s):  
Brandon Brown ◽  
Paolo Tambaro ◽  
Kris Mahadeo ◽  
Sajad Khazal ◽  
Priti Tewari ◽  
...  

Abstract INTRODUCTION Immune effector cell associated neurotoxicity (ICANS) and cytokine release syndrome (CRS) are potentially life-threatening complications associated with immune effector cell (IEC) therapies. We characterize ICANS in pediatric and adult young adolescent (AYA) patients receiving IEC therapy at our institution. METHODS We reviewed clinical characteristics and severity (based on ASTCT Consensus Criteria) in pediatric and AYA patients with IEC products from 2018–2019 at MDACC. RESULTS Nine patients, median age 15.5 (range: 3–25) years received chimeric antigen receptor (CART) IEC therapy. Four (44%) developed ICANS within median of 8 (range: 3–27) days of CAR T cell infusion and median 6 (range: 2–7) days after CRS. Primary diagnoses were pre-B cell acute lymphoblastic leukemia (8) and mediastinal large B-cell lymphoma (1). Median CRS and ICANS severity grade was 2 (range 1–4). Symptoms included altered mental status (AMS) (5), seizure (1), aphasia (2), impaired ability to write a standard sentence (4). Neuroimaging did not correlate to ICANS symptoms or severity. EEG was performed in 3 and 1 had background slowing correlating with aphasia. CSF was obtained in two revealing lymphocytosis. All received prophylactic anti-epileptic medication and tocilizumab for concomitant CRS. Three received steroids. CONCLUSION ICANS may present in almost half of pediatric patients within one week of receiving CART products associated with CRS. CAR-T trafficking into the CSF may explain pleocytosis in the CSF. Prospective studies may clarify. Impaired ability to write a standard sentence and the Cornell Assessment of Pediatric Delirium (CAPD) may be early indicators of ICANS in pediatric/AYA patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3721-3721
Author(s):  
Gerhard Niederfellner ◽  
Olaf Mundigl ◽  
Alexander Lifke ◽  
Andreas Franke ◽  
Ute Baer ◽  
...  

Abstract Abstract 3721 The anti-CD20 antibody rituximab has become central to the treatment of B-cell malignancies over the last decade. Recently, it has been shown that anti-CD20 antibodies can be divided into two types based on their mechanisms of action on B cells. Rituximab is a type I antibody that redistributes CD20 into lipid rafts and promotes complement-dependent cytotoxicity (CDC), while the type II, glycoengineered antibody GA101 has lower CDC activity but higher antibody-dependent cellular cytotoxicity and direct cell death activity. In preclinical studies GA101 was superior to rituximab in B-cell killing in vitro, depletion of B cells from whole blood, and inhibition of tumour cell growth in lymphoma xenograft models. GA101 is currently being evaluated in Phase II/III trials, including comparative studies with rituximab. To investigate the differences in direct effects of GA101 and rituximab on B-cell lymphoma signaling, we have analysed the effects of antibody binding on gene expression in different B-cell lines using a GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix). Rituximab and GA101 rapidly induced gene expression changes in SUDHL4 and Z138 cells, including regulation of genes associated with B-cell-receptor activation such as EGR2, BCL2A1, RGS1 and NAB2. The effects on gene expression differed markedly between different cell lines and between the two antibodies. SUDHL4 cells showed pronounced changes in the gene expression pattern to rituximab treatment, while Z138 cells, which represent a different B-cell stage, showed less pronounced changes in gene expression. The reverse was true for GA101, suggesting not only that the signaling mediated by CD20 differs in different cell lines, but also that in a given cell line the two types of antibodies bind CD20 molecules with different signaling capacity. For each cell line, gene expression induced by other type I antibodies (LT20, 2H7, MEM97) was more like rituximab and that induced by other type II antibodies (H299/B1, BH20) was more like GA101 in terms of the number of genes regulated and the magnitude of changes in expression. Unbiased hierarchical clustering analysis of gene expression in SUDHL4 could discriminate type I from type II antibodies, confirming that the two classes of antibody recognised CD20 complexes with inherently different signalling capacities. By confocal and time-lapse microscopy using different fluorophores, rituximab and GA101 localised to different compartments on the membrane of lymphoma cells. GA101/CD20 complexes were relatively static and predominantly associated with sites of cell–cell contact, while rituximab/CD20 complexes were highly dynamic and predominantly outside areas of contact. These findings suggest that type II antibodies such as GA101 bind distinct subpopulations of CD20 compared with type I antibodies such as rituximab, accounting for the differences in mechanisms of action and anti-tumour activity between these antibodies. Disclosures: Niederfellner: Roche: Employment. Mundigl:Roche: Employment. Lifke:Roche: Employment. Franke:Roche: Employment. Baer:Roche: Employment. Burtscher:Roche: Employment. Maisel:Roche: Employment. Belousov:Roche: Employment. Weidner:Roche: Employment. Umana:Roche: Employment, Patents & Royalties. Klein:Roche: Employment, Equity Ownership, Patents & Royalties.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3617
Author(s):  
Utkarsh H. Acharya ◽  
Roland B. Walter

Despite the availability of an increasing number of targeted therapeutics and wider use of allogeneic hematopoietic stem cell transplantation, many patients with acute myeloid leukemia (AML) ultimately succumb to this disease. Given their remarkable efficacy in B-acute lymphoblastic leukemia and other CD19-expressing B cell malignancies, there is hope adoptive cellular transfer, particularly chimeric antigen receptor (CAR)-modified immune effector cell (IEC) therapies, may afford a novel, potent immune-based approach for the treatment of AML that complements or replaces existing ones and improves cure rates. However, it is unclear how best to translate the success of these therapies from B cell malignancies, where use of highly potent immunotherapies is facilitated by identified target antigens with near ubiquitous expression on malignant cells and non-fatal consequences from “on-target, off-tumor cell” toxicities. Herein, we review the current status of CAR-modified IEC therapies for AML, with considerations regarding suitable, relatively leukemia-restricted target antigens, expected toxicities, and interactions of the engineered cells with a profoundly immunosuppressive tumor microenvironment that restricts their therapeutic efficacy. With these challenges in mind, we will discuss possible strategies to improve the cells’ potency as well as their therapeutic window for optimal clinical use in AML.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii116-ii116
Author(s):  
Brandon Brown ◽  
Kris Mahadeo ◽  
Sajad Khazal ◽  
Demetrios Petropoulos ◽  
Priti Tewari ◽  
...  

Abstract INTRODUCTION Immune effector cell associated neurotoxicity (ICANS) and cytokine release syndrome (CRS) are potentially life-threatening complications associated with immune effector cell (IEC) therapies. We characterize ICANS in pediatric and adult young adolescent (AYA) patients receiving IEC therapy at our institution. METHODS We reviewed clinical characteristics and severity (based on ASTCT Consensus Criteria) in pediatric and AYA patients who received IEC products from 2018–2019 at MDACC. RESULTS Nine patients, median age 15.5 (range: 3–25) years received chimeric antigen receptor (CART) IEC therapy. Four (44%) developed ICANS within median of 8 (range: 3–27) days of CAR T cell infusion and median 6 (range: 2–7) days after CRS. Primary diagnoses were pre-B cell acute lymphoblastic leukemia (8) and mediastinal large B-cell lymphoma (1). Median CRS and ICANS severity grade was 2 (range 1–4). Symptoms included altered mental status (AMS) (5), seizure (1), aphasia (2), impaired ability to write a standard sentence (4). Neuroimaging did not correlate to ICANS symptoms or severity. EEG was performed in 3 and 1 had background slowing correlating with aphasia. CSF was obtained in two revealing lymphocytosis. All received prophylactic anti-epileptic medication and tocilizumab for concomitant CRS. Three received steroids. CONCLUSION ICANS may present in almost half of pediatric patients within one week of receiving CART products associated with CRS. CAR-T trafficking into the CSF may explain pleocytosis in the CSF. Prospective studies may clarify. Impaired ability to write a standard sentence and the Cornell Assessment of Pediatric Delirium (CAPD) may be early indicators of ICANS in pediatric/AYA patients.


2004 ◽  
Vol 199 (12) ◽  
pp. 1659-1669 ◽  
Author(s):  
Junji Uchida ◽  
Yasuhito Hamaguchi ◽  
Julie A. Oliver ◽  
Jeffrey V. Ravetch ◽  
Jonathan C. Poe ◽  
...  

Anti-CD20 antibody immunotherapy effectively treats non-Hodgkin's lymphoma and autoimmune disease. However, the cellular and molecular pathways for B cell depletion remain undefined because human mechanistic studies are limited. Proposed mechanisms include antibody-, effector cell–, and complement-dependent cytotoxicity, the disruption of CD20 signaling pathways, and the induction of apoptosis. To identify the mechanisms for B cell depletion in vivo, a new mouse model for anti-CD20 immunotherapy was developed using a panel of twelve mouse anti–mouse CD20 monoclonal antibodies representing all four immunoglobulin G isotypes. Anti-CD20 antibodies rapidly depleted the vast majority of circulating and tissue B cells in an isotype-restricted manner that was completely dependent on effector cell Fc receptor expression. B cell depletion used both FcγRI- and FcγRIII-dependent pathways, whereas B cells were not eliminated in FcR common γ chain–deficient mice. Monocytes were the dominant effector cells for B cell depletion, with no demonstrable role for T or natural killer cells. Although most anti-CD20 antibodies activated complement in vitro, B cell depletion was completely effective in mice with genetic deficiencies in C3, C4, or C1q complement components. That the innate monocyte network depletes B cells through FcγR-dependent pathways during anti-CD20 immunotherapy has important clinical implications for anti-CD20 and other antibody-based therapies.


Sign in / Sign up

Export Citation Format

Share Document