Faculty Opinions recommendation of Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity.

Author(s):  
Kim Barrett
Science ◽  
2013 ◽  
Vol 339 (6123) ◽  
pp. 1084-1088 ◽  
Author(s):  
J. G. M. Markle ◽  
D. N. Frank ◽  
S. Mortin-Toth ◽  
C. E. Robertson ◽  
L. M. Feazel ◽  
...  

2020 ◽  
pp. 1-15 ◽  
Author(s):  
Caroline M. Daly ◽  
Juhi Saxena ◽  
Jagroop Singh ◽  
Meghan R. Bullard ◽  
Emma O. Bondy ◽  
...  

2021 ◽  
Author(s):  
Afrida Rahman-Enyart ◽  
Lizath M. Aguiniga ◽  
Wenbin Yang ◽  
Ryan E. Yaggie ◽  
Bryan White ◽  
...  

ABSTRACTGut microbiome-host interactions play a crucial role in health and disease. Altered gut microbiome composition has been observed in patients with interstitial cystitis/bladder pain syndrome (IC/BPS), a disorder characterized by pelvic pain, voiding dysfunction, and often co-morbid with anxiety/depression. We recently showed that mice deficient for acyloxyacyl hydrolase (AOAH) mimic pelvic pain symptoms and comorbidities of IC/BPS and also exhibit gut dysbiosis. In addition, we previously identified that the conditional knockout (cKO) of two transcriptional regulators of the gene encoding corticotropin-releasing factor, Crf, that are downstream of AOAH, aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor-γ (PPARγ), alleviate anxiety/depressive and voiding phenotypes of AOAH-deficient mice. Here, we examined the effects of AhR and PPARγ in CRF-expressing cells on the dysbiosis of AOAH-deficiency. AOAH-deficient mice with cKO of PPARγ and AhR/PPARγ exhibited reduced pelvic allodynia compared to AOAH-deficient mice, suggesting a role for PPARγ in regulating pelvic pain. 16S rRNA sequencing of fecal stool from female AOAH-deficient mice with a cKO of AhR and/or PPARγ in CRF-expressing cells identified altered gut microbiota distinct from AOAH-deficient stool. The cKO of AhR and PPARγ showed improved cecum barrier function in females compared to AOAH-deficient mice, whereas males were primarily affected by PPARγ, suggesting sex differences in gut responses. Pair-wise comparison of microbiota also suggested sex differences in response to AOAH-deficiency and conditional knockout of AhR and PPARγ. Our findings suggest that the dysbiosis and leaky gut of AOAH deficiency is mediated by AhR and PPARγ in CRF-expressing cells and reveal a novel mechanism and therapeutic targets for pelvic pain.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150122 ◽  
Author(s):  
Eldin Jašarević ◽  
Kathleen E. Morrison ◽  
Tracy L. Bale

In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome–brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.


2020 ◽  
Author(s):  
Ying Shi ◽  
Fangzhi Yue ◽  
Lin Xing ◽  
Shanyu Wu ◽  
Lin Wei ◽  
...  

Abstract Background Sex differences in obesity and related metabolic diseases are well recognized, however, the mechanism has not been elucidated. Gut microbiota and its metabolites may play a vital role in the development of obesity and metabolic diseases. The aim of the present study was to investigate sex differences in gut microbiota and its metabolites in a high-fat-diet (HFD) obesity rats and identify microbiota genera potentially contributing to such differences in obesity and non-alcoholic fatty liver disease (NAFLD) susceptibility. Results Sprague–Dawley rats were divided into the following groups (seven animals per group): (1) male rats on a normal diet (MND), (2) male rats on HFD (MHFD), (3) female rats on a normal diet (FND), and (4) female rats on HFD (FHFD). HFD induced more body weight gain and fat storage in female rats, however, lower hepatic steatosis in FHFD than in MHFD rats was observed. When considering gut microbiota composition, FHFD rats had lower microbiome diversity than MHFD. A significant increase of Firmicutes phylum and Bilophila genus was detected in MHFD rats, as compared with FHFD, which showed increased relative abundance of Murimonas and Roseburia . Moreover, propionic and lauric acid levels were higher in FHFD than those in MHFD rats. Conclusion HFD induced sex-related alterations in gut microbiome and fatty acids. Furthermore, the genus Bilophila and Roseburia might contribute to sex differences observed in obesity and NAFLD susceptibility.


Sign in / Sign up

Export Citation Format

Share Document