scholarly journals Sex differences in gut microbiome in high-fat-diet fed rats.

2020 ◽  
Author(s):  
Ying Shi ◽  
Fangzhi Yue ◽  
Lin Xing ◽  
Shanyu Wu ◽  
Lin Wei ◽  
...  

Abstract Background Sex differences in obesity and related metabolic diseases are well recognized, however, the mechanism has not been elucidated. Gut microbiota and its metabolites may play a vital role in the development of obesity and metabolic diseases. The aim of the present study was to investigate sex differences in gut microbiota and its metabolites in a high-fat-diet (HFD) obesity rats and identify microbiota genera potentially contributing to such differences in obesity and non-alcoholic fatty liver disease (NAFLD) susceptibility. Results Sprague–Dawley rats were divided into the following groups (seven animals per group): (1) male rats on a normal diet (MND), (2) male rats on HFD (MHFD), (3) female rats on a normal diet (FND), and (4) female rats on HFD (FHFD). HFD induced more body weight gain and fat storage in female rats, however, lower hepatic steatosis in FHFD than in MHFD rats was observed. When considering gut microbiota composition, FHFD rats had lower microbiome diversity than MHFD. A significant increase of Firmicutes phylum and Bilophila genus was detected in MHFD rats, as compared with FHFD, which showed increased relative abundance of Murimonas and Roseburia . Moreover, propionic and lauric acid levels were higher in FHFD than those in MHFD rats. Conclusion HFD induced sex-related alterations in gut microbiome and fatty acids. Furthermore, the genus Bilophila and Roseburia might contribute to sex differences observed in obesity and NAFLD susceptibility.

2020 ◽  
Author(s):  
Ying Shi ◽  
Fangzhi Yue ◽  
Lin Xing ◽  
Shanyu Wu ◽  
Lin Wei ◽  
...  

Abstract Background: Sex differences in obesity and related metabolic diseases are well recognized, however, the mechanism has not been elucidated. Gut microbiota and its metabolites may play a vital role in the development of obesity and metabolic diseases. The aim of the present study was to investigate sex differences in gut microbiota and its metabolites in a high-fat-diet (HFD) obesity rats and identify microbiota genera potentially contributing to such differences in obesity and non-alcoholic fatty liver disease (NAFLD) susceptibility.Methods: Sprague–Dawley rats were divided into four groups (eight animals per group): (1) male rats on a normal diet (MND), (2) male rats on HFD (MHFD), (3) female rats on a normal diet (FND), and (4) female rats on HFD (FHFD). Body weight, liver pathology, gut microbiota and short/medium chain fatty acids in colon contents were compared between different sexes.Results: HFD induced more body weight gain and fat storage in female rats, however, lower hepatic steatosis in FHFD than in MHFD rats was observed. When considering gut microbiota composition, FHFD rats had lower microbiome diversity than MHFD. A significant increase of Firmicutes phylum, along with Bilophila and Blautia genus was detected in MHFD rats, as compared with FHFD, which showed increased relative abundance of Murimonas. Moreover, propionic and lauric acid levels were higher in FHFD than those in MHFD rats. Conclusions: HFD induced sex-related alterations in gut microbiome and fatty acids. Furthermore, the genus Bilophila, Blautia and Murimonas might contribute to sex differences observed in obesity and NAFLD susceptibility.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gil Zandani ◽  
Sarit Anavi-Cohen ◽  
Nina Tsybina-Shimshilashvili ◽  
Noa Sela ◽  
Abraham Nyska ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu-Chun Lin ◽  
Hsu-Feng Lu ◽  
Jui-Chieh Chen ◽  
Hsiu-Chen Huang ◽  
Yu-Hsin Chen ◽  
...  

Abstract Background Obesity and its associated diseases have become a major world-wide health problem. Purple-leaf Tea (Camellia sinensis L.) (PLT), that is rich of anthocyanins, has been shown to have preventive effects on obesity and metabolic disorders. The intestinal microbiota has been shown to contribute to inflammation, obesity, and several metabolic disorders. However, whether PLT consumption could prevent obesity and diet-induced metabolic diseases by modulating the gut microbiota, is not clearly understood. Methods In this study, six-week-old male C57BL/6 J mice were fed a normal diet (ND) or a high fat diet (HFD) without or with PLT for 10 weeks. Results PLT modulated the gut microbiota in mice and alleviated the symptoms of HFD-induced metabolic disorders, such as insulin resistance, adipocyte hypertrophy, and hepatic steatosis. PLT increased the diversity of the microbiota and the ratio of Firmicutes to Bacteroidetes. f_Barnesiellaceae, g_Barnesiella, f_Ruminococcaceae, and f_Lachnospiraceae were discriminating faecal bacterial communities of the PLT mice that differed from the HFD mice. Conclusions These data indicate that PLT altered the microbial contents of the gut and prevented microbial dysbiosis in the host, and consequently is involved in the modulation of susceptibility to insulin resistance, hepatic diseases, and obesity that are linked to an HFD.


2022 ◽  
Author(s):  
Ying Lan ◽  
Qingyang Sun ◽  
Zhiyuan Ma ◽  
Jing Peng ◽  
Mengqi Zhang ◽  
...  

Obesity has been reported to be associated with gut microbiome dysbiosis. seabuckthorn fruits are traditionally used in Tibetan foods and medicines for thousands of years. Seabuckthorn polysaccharide (SP) is one...


2021 ◽  
Author(s):  
Zhen Shi ◽  
Zhiyuan Fang ◽  
Xinxing Gao ◽  
Hao Yu ◽  
Yiwei Zhu ◽  
...  

Nuciferine (NF) has received extensive attention for its medicinal value in the treatment of metabolic diseases, such as obesity, but the effects of NF on obesity-related intestinal permeability, autophagy and...


Drug Research ◽  
2018 ◽  
Vol 68 (10) ◽  
pp. 553-559
Author(s):  
Golbahar Saeedi ◽  
Fereshteh Jeivad ◽  
Mohammadhadi Goharbari ◽  
Gholamreza Gheshlaghi ◽  
Omid Sabzevari

Abstract Background Non-alcoholic fatty liver (NAFLD) is one the most prevalent disease worldwide which characterized by fat accumulation in liver with no established efficient therapy. We designed this study to investigate protective and therapeutic effect of Crataegus oxyacantha L. (C. oxyacantha) on NAFLD induced by high fat diet in rat models. Methods NAFLD was induced by High Fat Diet+fructose (HFD), 45 Wistar rats were divided to 8 groups including control, HFD, HFD+diet change, HFD+diet change+C. oxyacantha 20 mg/kg, co treatment of HFD+C. oxyacantha 10, 20 and 40 mg/kg, and normal diet+C. oxyacantha 40 mg. C. oxyacantha was administered orally. Effectiveness of the C. oxyacantha was assessed through measuring the biochemical factors, and oxidative stress marker (FRAP, GSH, and MDA). Histopathological study was performed using H & E staining. Results The diet change from high fat to low fat ameliorated liver damage. However, consumption of C. oxyacantha (10 & 20 mg/kg) caused significant reduction in the level of all examined liver biomarkers specially LDH, that showed C. oxyacantha can restore the hepatocyte damage due to HFD. The C. oxyacantha showed a protective effect which was more prominent in the animals treated with the 20 mg/kg C. oxyacantha. The administration of C. oxyacantha caused increased antioxidant status (GSH and FRAP levels) and decreased lipid peroxidation in treated animals. Major Conclusion Accordingly, C. oxyacantha have both therapeutic and protective effect for NAFLD and may be a potential candidate for further assessments in clinical studies.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3240
Author(s):  
Ana Magdalena Velázquez ◽  
Núria Roglans ◽  
Roger Bentanachs ◽  
Maria Gené ◽  
Aleix Sala-Vila ◽  
...  

Non-alcoholic fatty liver disease is a highly prevalent condition without specific pharmacological treatment, characterized in the initial stages by hepatic steatosis. It was suggested that lipid infiltration in the liver might be reduced by caffeine through anti-inflammatory, antioxidative, and fatty acid metabolism-related mechanisms. We investigated the effects of caffeine (CAF) and green coffee extract (GCE) on hepatic lipids in lean female rats with steatosis. For three months, female Sprague-Dawley rats were fed a standard diet or a cocoa butter-based high-fat diet plus 10% liquid fructose. In the last month, the high-fat diet was supplemented or not with CAF or a GCE, providing 5 mg/kg of CAF. Plasma lipid levels and the hepatic expression of molecules involved in lipid metabolism were determined. Lipidomic analysis was performed in liver samples. The diet caused hepatic steatosis without obesity, inflammation, endoplasmic reticulum stress, or hepatic insulin resistance. Neither CAF nor GCE alleviated hepatic steatosis, but GCE-treated rats showed lower hepatic triglyceride levels compared to the CAF group. The GCE effects could be related to reductions of hepatic (i) mTOR phosphorylation, leading to higher nuclear lipin-1 levels and limiting lipogenic gene expression; (ii) diacylglycerol levels; (iii) hexosylceramide/ceramide ratios; and (iv) very-low-density lipoprotein receptor expression. In conclusion, a low dose of CAF did not reduce hepatic steatosis in lean female rats, but the same dose provided as a green coffee extract led to lower liver triglyceride levels.


2020 ◽  
Vol 11 (4) ◽  
pp. 2953-2968 ◽  
Author(s):  
Xiaobing Yang ◽  
Wenjing Mo ◽  
Chuanjin Zheng ◽  
Wenzhi Li ◽  
Jian Tang ◽  
...  

Non-alcoholic fatty liver disease is associated with gut microbiota, oxidative stress, and inflammation.


Sign in / Sign up

Export Citation Format

Share Document