Faculty Opinions recommendation of Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation.

Author(s):  
Mark Boothby
2013 ◽  
Vol 14 (5) ◽  
pp. 500-508 ◽  
Author(s):  
Linda V Sinclair ◽  
Julia Rolf ◽  
Elizabeth Emslie ◽  
Yun-Bo Shi ◽  
Peter M Taylor ◽  
...  

Leukemia ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 2771-2779 ◽  
Author(s):  
K M Grzes ◽  
M Swamy ◽  
J L Hukelmann ◽  
E Emslie ◽  
L V Sinclair ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A696-A696
Author(s):  
Teresa Manzo ◽  
Carina Nava Lauveson ◽  
Teresa Maria Frasconi ◽  
Silvia Tiberti ◽  
Ignazio Caruana ◽  
...  

BackgroundAdoptive cell therapy (ACT) harnesses the immune system to recognise tumor cells and carry out an anti-tumor function. However, metabolic constraints imposed by the tumour microenvironment (TME) suppress anti-tumor responses of CTL by reshaping their metabolism and epigenetic landscape. We have recently demonstrated that progressive accumulation of specific long-chain fatty acids (LCFAs) impair mitochondrial function and drives CD8+ T cell dysfunction. In this scenario, maintaining T cells in a less-differentiated state and with high metabolic plasticity during ex vivo T cell production and after infusion may have a strong therapeutic impact. Here, we propose a novel strategy to boost ACT efficacy by implementing T cell long-term functionality, metabolic fitness and preventing exhaustion through lipid-induced mitochondrial rewiring.MethodsWe screen different LCFAs and assess their ability to shape CD8+ T cell differentiation using multi-parametric flow cytometry, proliferation and cytotoxic assays, together with a complete transcriptomic and epigenomic profiling. Metabolic reprogramming of lipid-treated CD8+ T cell was examined by bioenergetic flux measurements paired with metabolomic and lipidomic analysis. Finally, the anti-tumor responses of lipid-instructed CD8 T cells was evaluated in a melanoma mouse model, known to poorly respond to immunotherapy.ResultsLCFAs-treated CD8+ T cells are endowed with highly effector and cytotoxic features but still retaining a memory-like phenotype with decreased PD1 protein levels. Consistently, analysis of the bioenergetic profile and mitochondrial activity has shown that LCFA-instructed CD8+ T cells display a greater mitochondrial fitness. Thus, in vitro LCFA-instructed CD8+ T cells are characterized by higher mitochondrial fitness, potent functionality, memory-like phenotype and PD-1 down-regulation, overall evoking the ideal T cell population associated with a productive anti-tumor response. The therapeutic potential of CD8 T cells lipid-induced metabolic rewiring was further confirmed in vivo. ACT performed with LCFA-reprogrammed CD8 T cells induces higher frequency of memory T cells, which show high polyfunctionality and mitochondrial function, decreased PD1 expression, ultimately resulting in improved tumor control. In addition, LCFA-induced metabolic rewiring during manufacturing of human CAR-redirected T cells, generated a CD8+ T cell memory-like population with higher mitochondrial fitness coupled with a much potent cytotoxic activity.ConclusionsThese results suggest that LCFAs dictate the fate of CD8+ T cell differentiation and could be considered as a molecular switch to fine-tune memory T cell formation and metabolic fitness maintenance, linking lipid metabolism to anti-tumor surveillance. This will be of fundamental importance for a new generation of adoptive T cell-based therapies.Ethics ApprovalThe experiments described were performed in accordance with the European Union Guideline on Animal Experiments and mouse protocols were approved by Italian Ministry of Health and the IEO Committee.


2018 ◽  
Author(s):  
Linda V Sinclair ◽  
Andrew JM Howden ◽  
Alejandro J Brenes-Murillo ◽  
Laura Spinelli ◽  
Jens L Hukelmann ◽  
...  

Immune activated T lymphocytes modulate the activity of key metabolic pathways to support the transcriptional reprograming and reshaping of cell proteomes that permits effector T cell differentiation. The present study uses high resolution mass spectrometry and metabolic labelling to explore how T cells control the methionine cycle to produce methyl donors for protein and nucleotide methylations. We show that antigen receptor engagement controls flux through the methionine cycle and also controls RNA and histone methylations. We establish that the main rate limiting step for the methionine cycle is control of methionine transporter expression by antigen receptors. Only T cells that respond to antigen to upregulate and sustain methionine transport are supplied with the methyl donors that permit the dynamic nucleotide methylations and epigenetic reprogramming that drives T cell differentiation.


1991 ◽  
Vol 260 (3) ◽  
pp. C392-C399 ◽  
Author(s):  
J. V. Vadgama ◽  
M. N. Chan ◽  
J. M. Wu

The human erythroleukemic cell K-562 serves as an in vitro model to study changes in cell surface antigens and mechanisms regulating globin gene expression associated with in vivo erythropoiesis. In this report we have examined the regulation of amino acid transport systems, in particular, systems A and ASC, during differentiation of erythroleukemic cells. For additional comparison we examined the uptake of leucine, 3-aminoendobicyclo-(3,2,1)-octane-3-carboxylic acid (BCO), arginine, and glutamate. Hexamethylene-bis-acetamide (HMBA), dimethyl sulfoxide, and butyrate induce cell differentiation with a block in G1-G0 phase of the cell cycle. These agents caused a significant downregulation of 2-(methylamino)isobutyric acid uptake by system A. In contrast, the Na(+)-dependent threonine uptake by system ASC remained unaltered. The uptake of leucine, BCO, arginine, and glutamate by as yet unidentified systems was, however, stimulated after HMBA treatment. Hemin, a potent inducer of hemoglobin synthesis in K-562 cells, does not block cell cycle events and, interestingly, had no significant effect on both systems A and ASC. These differences in inducer actions suggest that system A activity may be related to specific stages of cell differentiation and perhaps to other cellular signals.


Sign in / Sign up

Export Citation Format

Share Document