Faculty Opinions recommendation of Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells.

Author(s):  
John Silke
Science ◽  
2013 ◽  
Vol 341 (6144) ◽  
pp. 403-406 ◽  
Author(s):  
J. Suzuki ◽  
D. P. Denning ◽  
E. Imanishi ◽  
H. R. Horvitz ◽  
S. Nagata

Author(s):  
Patrick Williamson ◽  
Stefan van den Eijnde ◽  
Robert A. Schlegel

Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 663-666 ◽  
Author(s):  
Simone M. Schoenwaelder ◽  
Yuping Yuan ◽  
Emma C. Josefsson ◽  
Michael J. White ◽  
Yu Yao ◽  
...  

Abstract Procoagulant platelets exhibit hallmark features of apoptotic cells, including membrane blebbing, microvesiculation, and phosphatidylserine (PS) exposure. Although platelets possess many well-known apoptotic regulators, their role in regulating the procoagulant function of platelets is unclear. To clarify this, we investigated the consequence of removing the essential mediators of apoptosis, Bak and Bax, or directly inducing apoptosis with the BH3 mimetic compound ABT-737. Treatment of platelets with ABT-737 triggered PS exposure and a marked increase in thrombin generation in vitro. This increase in procoagulant function was Bak/Bax- and caspase-dependent, but it was unaffected by inhibitors of platelet activation or by chelating extracellular calcium. In contrast, agonist-induced platelet procoagulant function was unchanged in Bak−/−Bax−/− or caspase inhibitor–treated platelets, but it was completely eliminated by extracellular calcium chelators or inhibitors of platelet activation. These studies show the existence of 2 distinct pathways regulating the procoagulant function of platelets.


2003 ◽  
Vol 71 (2) ◽  
pp. 964-972 ◽  
Author(s):  
Christopher D. Huston ◽  
Douglas R. Boettner ◽  
Vanessa Miller-Sims ◽  
William A. Petri,

ABSTRACT The ability of Entamoeba histolytica to kill and phagocytose host cells correlates with parasite virulence. This study addressed the role of apoptotic cell killing and host cell phosphatidylserine exposure in the subsequent phagocytosis of Jurkat T cells by E. histolytica. Ingested host cells were apoptotic, as evidenced by the activation of caspase 3 in 88% ± 3% (mean and standard deviation [SD] of the mean) of Jurkat cells engulfed by E. histolytica; ingested cells without detectable active caspase 3 were already disrupted and partially digested. That apoptotic cell killing preceded phagocytosis was supported by the demonstration that a higher percentage of amebae ingested apoptotic cells than ingested healthy cells (62% ± 7% versus 30% ± 9%, respectively [mean and SD]) (P = 0.008). E. histolytica also ingested apoptotic Jurkat cells more rapidly than necrotic control cells (8.5% ± 0.4% versus 3.5% ± 0.7%, respectively [mean and SD]) (P < 0.001). The inhibition of amebic cytotoxicity with d-galactose (which blocks the amebic Gal/GalNAc lectin) blocked the phagocytosis of healthy cells by greater than 80%, providing further evidence that apoptosis preceded engulfment. In contrast, d-galactose blocked the phagocytosis of already apoptotic cells by only 40%, implicating an additional host ligand (besides d-galactose) in amebic engulfment of apoptotic cells. The most characteristic surface change on apoptotic cells is phosphatidylserine exposure. Consistent with a role for host cell phosphatidylserine exposure in amebic ingestion of killed cells, Jurkat cell phosphatidylserine was exposed during incubation with E. histolytica (27% ± 1% [mean and SD] specific increase at 30 min) (the P value versus the control was 0.0003). Approximately 50% more amebae ingested viable Jurkat cells expressing phosphatidylserine on the outer leaflet of the plasma membrane than ingested control cells (30.3% ± 2.2% versus 19.8% ± 1.9%, respectively [mean and SD]) (P = 0.003). By analogy with phagocytic clearance during apoptosis in metazoans, amebic apoptotic host cell killing followed by phagocytosis may limit inflammation and enable amebae to evade the host immune response.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009947
Author(s):  
Qian Zheng ◽  
Ning Gao ◽  
Qiling Sun ◽  
Xiaowen Li ◽  
Yanzhe Wang ◽  
...  

Efferocytosis is the process by which phagocytes recognize, engulf, and digest (or clear) apoptotic cells during development. Impaired efferocytosis is associated with developmental defects and autoimmune diseases. In Drosophila melanogaster, recognition of apoptotic cells requires phagocyte surface receptors, including the scavenger receptor CD36-related protein, Croquemort (Crq, encoded by crq). In fact, Crq expression is upregulated in the presence of apoptotic cells, as well as in response to excessive apoptosis. Here, we identified a novel gene bfc (booster for croquemort), which plays a role in efferocytosis, specifically the regulation of the crq expression. We found that Bfc protein interacts with the zinc finger domain of the GATA transcription factor Serpent (Srp), to enhance its direct binding to the crq promoter; thus, they function together in regulating crq expression and efferocytosis. Overall, we show that Bfc serves as a Srp co-factor to upregulate the transcription of the crq encoded receptor, and consequently boosts macrophage efferocytosis in response to excessive apoptosis. Therefore, this study clarifies how phagocytes integrate apoptotic cell signals to mediate efferocytosis.


Author(s):  
Amelia E. Hochreiter-Hufford ◽  
Sanja Arandjelovic ◽  
Kodi S. Ravichandran

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 131-131
Author(s):  
Koichi Miyake ◽  
Taiju Utsugisawa ◽  
Johan Flygare ◽  
Thomas Kiefer ◽  
Isao Hamaguchi ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital red cell aplasia in which 25% of the patients have a mutation in the ribosomal protein (RP) S19 gene. It is not known how the RPS19 deficiency impairs erythopoiesis and proliferation of hematopoietic progenitors. We have established an in vitro models for RPS19 deficient DBA using lentiviral vector mediated doxycycline (Dox) inducible small interfering RNA (siRNA) against RPS19 (Mol Ther.11:627–637. 2005). Suppression of cell growth and erythroid colony formation correlated with the suppression level of RPS 19, indicating that these cell lines are useful to determine the mechanisms of RPS19 deficient DBA. To elucidate molecular mechanisms in RPS19 deficient DBA, we analyzed cell cycle of Dox induced RPS19 deficient TF-1 cells. RPS19 deficient TF-1 cells showed G0/G1 arrest (82% vs 58%, p&lt;0.05) together with accumlation of p21 and p27, and apoptotic cells detected by Annexin-V analysis also increased compared to control Dox induced TF-1 cells (13% vs 3.1%, p&lt;0.05). Increase of apoptotic cells in RPS19 deficient cells was confirmed by TUNEL assay. Western blot analysis of apoptotic related protein showed that the level of bcl-2 and Bad was decreased in RPS19 deficient TF1 cells compared to control cells. This down-regulation of apoptotic related protein was improved by transduction with lentiviral vector expressing modified RPS19, which is not affected by siRNA but produce normal functional RPS19 protein and rescues the DBA phenotype. Moreover, primary CD34 positive cells from DBA patients detected by Annexin-V analysis also generate a high number of apoptotic cells compared to normal CD34 positive cells during in vitro culture (38% vs 8.9%, n=5, p&lt;0.001). These findings indicate that erythroid progenitor cells are more sensitive to apoptosis than other hematopoietic progenitors and that RPS19 deficiency causes apotosis and accelerated loss of erythroid progenitors in RPS19 deficient DBA.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-31-SCI-31 ◽  
Author(s):  
Shigekazu Nagata

Abstract One of the hallmarks of apoptosis is the caspase-dependent exposure of phosphatidylserine (PtdSer) on cell surface, which is recognized by macrophages for engulfment of dead cells (1). How PtdSer is exposed to the cell surface had been elusive for a long time. We recently identified two membrane proteins (TMEM16F and Xkr8) that are involved in scrambling of phospholipids in plasma membrane (2, 3). TMEM16F carries 8 transmembrane regions, and requires Ca2+ to mediate phospholipid scrambling. It plays a role in the PtdSer-exposure in activated platelets for blood clotting, and patients of Scott Syndrome who suffer bleeding disorder carry a mutation in TMEM16F gene. Xkr8 is a protein carrying 6 transmembrane regions. Caspase 3 and 7 cleave off the C-terminal tail of Xkr8, and the cleaved Xkr8 promotes the PtdSer-exposure. In addition to the activation of scramblase, the flippase that translocates PtdSer from outer to inner leaflets was thought to be inactivated during apoptosis. In fact, we recently found that a pair of molecules, ATP11C of a P4-type ATPase and its chaperon CDC50A work as a flippase at plasma membrane (4, 5). ATP11C carries three caspase recognition sites in the middle of the molecule, and is cleaved during apoptosis. When ATP11C gene is mutated, the cells lose most of the flippase activity, but the asymmetrical distribution of PtdSer was still maintained at plasma membrane. Whereas, the cells lacking CDC50A completely lost the flippase activity and constitutively exposed PtdSer. The PtdSer-exposing living CDC50A-null cells were engulfed by thioglycollate-elicited macrophages, indicating that PtdSer exposed on the cell surface is necessary and sufficient to be recognized by macrophages for engulfment. Several molecules such as MFG-E8, Tim-4, Gas6, and Protein S specifically bind to PtdSer with high affinity, and promote the engulfment of PtdSer-exposing cells. However, how they work for the engulfment of apoptotic cells in certain macrophages has not been clear. We recently found that that resident peritoneal macrophages require both Tim4 and Protein S for engulfment, and Tim4, PtdSer-receptor, was involved in tethering of apoptotic cells, while Protein S promoted the engulfment of apoptotic cells by binding to MerTK, a tyrosine kinase receptor (6, 7). Here, I discuss how PdtSer is exposed during apoptotic cell death, and how dead cells are engulfed by macrophages. 1. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140:619-630. 2. Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010;468:834-838. 3. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 2013;341:403-406. 4. Segawa K, Suzuki J, Nagata S. Flippases and scramblases in the plasma membrane. Cell Cycle. 2014;13:2990-2991. 5. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp T, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 2014;344:1164-1168. 6. Nishi C, Toda S, Segawa K, Nagata S. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol Cell Biol. 2014;34:1512-1520. 7. Toda S, Segawa K, Nagata S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood. 2014;123:3963-3971. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document