Flippases and Scramblases at Plasma Membranes that Regulate Phosphatidylserine Exposure

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-31-SCI-31 ◽  
Author(s):  
Shigekazu Nagata

Abstract One of the hallmarks of apoptosis is the caspase-dependent exposure of phosphatidylserine (PtdSer) on cell surface, which is recognized by macrophages for engulfment of dead cells (1). How PtdSer is exposed to the cell surface had been elusive for a long time. We recently identified two membrane proteins (TMEM16F and Xkr8) that are involved in scrambling of phospholipids in plasma membrane (2, 3). TMEM16F carries 8 transmembrane regions, and requires Ca2+ to mediate phospholipid scrambling. It plays a role in the PtdSer-exposure in activated platelets for blood clotting, and patients of Scott Syndrome who suffer bleeding disorder carry a mutation in TMEM16F gene. Xkr8 is a protein carrying 6 transmembrane regions. Caspase 3 and 7 cleave off the C-terminal tail of Xkr8, and the cleaved Xkr8 promotes the PtdSer-exposure. In addition to the activation of scramblase, the flippase that translocates PtdSer from outer to inner leaflets was thought to be inactivated during apoptosis. In fact, we recently found that a pair of molecules, ATP11C of a P4-type ATPase and its chaperon CDC50A work as a flippase at plasma membrane (4, 5). ATP11C carries three caspase recognition sites in the middle of the molecule, and is cleaved during apoptosis. When ATP11C gene is mutated, the cells lose most of the flippase activity, but the asymmetrical distribution of PtdSer was still maintained at plasma membrane. Whereas, the cells lacking CDC50A completely lost the flippase activity and constitutively exposed PtdSer. The PtdSer-exposing living CDC50A-null cells were engulfed by thioglycollate-elicited macrophages, indicating that PtdSer exposed on the cell surface is necessary and sufficient to be recognized by macrophages for engulfment. Several molecules such as MFG-E8, Tim-4, Gas6, and Protein S specifically bind to PtdSer with high affinity, and promote the engulfment of PtdSer-exposing cells. However, how they work for the engulfment of apoptotic cells in certain macrophages has not been clear. We recently found that that resident peritoneal macrophages require both Tim4 and Protein S for engulfment, and Tim4, PtdSer-receptor, was involved in tethering of apoptotic cells, while Protein S promoted the engulfment of apoptotic cells by binding to MerTK, a tyrosine kinase receptor (6, 7). Here, I discuss how PdtSer is exposed during apoptotic cell death, and how dead cells are engulfed by macrophages. 1. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140:619-630. 2. Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010;468:834-838. 3. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 2013;341:403-406. 4. Segawa K, Suzuki J, Nagata S. Flippases and scramblases in the plasma membrane. Cell Cycle. 2014;13:2990-2991. 5. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp T, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 2014;344:1164-1168. 6. Nishi C, Toda S, Segawa K, Nagata S. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol Cell Biol. 2014;34:1512-1520. 7. Toda S, Segawa K, Nagata S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood. 2014;123:3963-3971. Disclosures No relevant conflicts of interest to declare.

1983 ◽  
Vol 62 (1) ◽  
pp. 287-299
Author(s):  
M.N. Meirelles ◽  
A. Martinez-Palomo ◽  
T. Souto-Padron ◽  
W. De Souza

Untreated mouse peritoneal macrophages as well as macrophages treated with concanavalin A (ConA) were incubated in the presence of untreated or ConA-treated epimastigotes and trypomastigotes of Trypanosoma cruzi. Treatment of epimastigotes or trypomastigotes with ConA increased or decreased their uptake by macrophages, respectively. Treatment of their macrophages with ConA reduced by 70% and increased by five times the ingestion of epimastigotes and trypomastigotes, respectively. These results are discussed in relation to previous studies on the mobility of ConA receptors in the membrane of the parasite. Using fluorescein- or ferritin-labelled ConA we observed that ConA binding sites located on the plasma membrane of macrophages are internalized during endocytosis of T. cruzi, and observed in association with the membrane of the endocytic vacuole. Vacuoles without parasites showed a uniform distribution of ConA binding sites, while these sites were distributed in patches in vacuoles containing parasites. These results, in association with others previously reported, suggest the involvement of glycoproteins and/or glycolipids localized on the cell surface of T. cruzi and macrophages during the T. cruzi-macrophage interaction.


2014 ◽  
Vol 289 (44) ◽  
pp. 30257-30267 ◽  
Author(s):  
Jun Suzuki ◽  
Eiichi Imanishi ◽  
Shigekazu Nagata

Apoptotic cells expose phosphatidylserine (PtdSer) on their surface as an “eat me” signal. Mammalian Xk-related (Xkr) protein 8, which is predicted to contain six transmembrane regions, and its Caenorhabditis elegans homolog CED-8 promote apoptotic PtdSer exposure. The mouse and human Xkr families consist of eight and nine members, respectively. Here, we found that mouse Xkr family members, with the exception of Xkr2, are localized to the plasma membrane. When Xkr8-deficient cells, which do not expose PtdSer during apoptosis, were transformed by Xkr family members, the transformants expressing Xkr4, Xkr8, or Xkr9 responded to apoptotic stimuli by exposing cell surface PtdSer and were efficiently engulfed by macrophages. Like Xkr8, Xkr4 and Xkr9 were found to possess a caspase recognition site in the C-terminal region and to require its direct cleavage by caspases for their function. Site-directed mutagenesis of the amino acid residues conserved among CED-8, Xkr4, Xkr8, and Xkr9 identified several essential residues in the second transmembrane and second cytoplasmic regions. Real time PCR analysis indicated that unlike Xkr8, which is ubiquitously expressed, Xkr4 and Xkr9 expression is tissue-specific.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 625 ◽  
Author(s):  
Jiraporn Ousingsawat ◽  
Rainer Schreiber ◽  
Karl Kunzelmann

Ca2+ activated Cl− channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.


2016 ◽  
Vol 113 (34) ◽  
pp. 9509-9514 ◽  
Author(s):  
Jun Suzuki ◽  
Eiichi Imanishi ◽  
Shigekazu Nagata

Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG−/−NPTN−/− cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG’s association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1314-1314
Author(s):  
Zhigang Xie ◽  
Jayantha Gunaratne ◽  
Lip Lee Cheong ◽  
Shaw Cheng Liu ◽  
Tze Loong Koh ◽  
...  

Abstract Abstract 1314 Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. Patients with t(4;14) have very poor prognosis. MMSET, identified by its fusion to the IgH locus in t(4;14) MM, is universally overexpressed in t(4;14) MM. In order to identify cell surface biomarkers associated with t(4;14) MM for small molecule or antibody based therapies, we knocked down MMSET expression with shRNA and generated a cell line pair from KMS11, a t(4;14) MM cell line. We used quantitative mass spectrometry based on stable isotope labelling by amino acids in cell culture (SILAC) to identify plasma membrane proteins associated with MMSET overexpression. Using this approach, 55 cell surface proteins were identified as differentially expressed between KMS11 and KMS11/shMMSET. Western blot and flow cytometry analysis indicated SLAMF7 was universally over-expressed in t(4;14) MM cell lines and down-regulated by MMSET shRNAs. Quantitative RT-PCR (qPCR) analysis indicated MMSET shRNAs resulted in significant reduction of SLAMF7 mRNA, suggesting MMSET might regulate the transcription level of SLAMF7. ChIP followed by qPCR analysis indicated MMSET protein binding was concentrated in an upstream region (near −1,500 bp) of SLAMF7 transcript start site. Furthermore, SLAMF7 shRNA could induce G1 arrest or apoptosis and reduce clonogenetic capacity in t(4;14) MM cells. SLAMF7 is a self-ligand receptor, and we found that SLAMF7 extracellular domain (ECD) could specifically recognize t(4;14) MM cells. Overall, these results illustrated SLAMF7 might be a novel cell surface protein associated with t(4;14) MM, and SLAMF7 ECD might be an alternative approach for targeting SLAMF7 on t(4;14) MM. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 42 (5) ◽  
pp. 1985-1998 ◽  
Author(s):  
Mehrdad Ghashghaeinia ◽  
Mauro Carlos Wesseling ◽  
Elena Ramos ◽  
Polina Petkova-Kirova ◽  
Sabrina Waibel ◽  
...  

Background and Purpose: The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl)-propyl]-2-(trifluoromethyl)-(10)H-phenothiazine dihydrochloride; TFP) may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) and inhibited by nitric oxide (NO). We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. Results: Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP), an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. Conclusions: TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+.


Sign in / Sign up

Export Citation Format

Share Document