Faculty Opinions recommendation of Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro.

Author(s):  
Valerie Billard
2021 ◽  
Author(s):  
Yan Lin ◽  
Mingjing Wang ◽  
Zhen Xiao ◽  
Zhiyan Jiang

Abstract Adenoid hypertrophy (AH) can cause harmful effects on untreated children, which include mouth breathing, chronic intermittent hypoxia, sleep disordered breathing (SDB), and even some behavioral problems. However, the molecular mechanisms underlying this pathophysiological process have remained poorly understood. In this study, with use of a variety of biochemical approaches including gene silencing and transiently ectopic protein expression, we examined the molecular effectors involved in this process in an in vitro model of human tonsil epithelial cells (HTECs). We found that a hypoxic condition caused a dramatic upregulation of SUMO-1 expression, a member of the ubiquitin-like protein family, which in turn stabilized hypoxia-inducible factor (HIF)-1α by sumoylating this HIF subunit and thus preventing its ubiquitination and degradation in HTECs. We also found that activating HIF-1α promoted permeability of HTEC cells as well as production and secretion of a variety of proinflammatory cytokines including IL-6, IL-8, and TNF-α, and pro-angiogenic growth factor VEGF. Furthermore, our data showed that hypoxia-induced inflammation was markedly inhibited by M2 macrophages that possess potent anti-inflammatory function. Our results suggest that selectively inhibiting the SUMO-1-HIF-1α signaling pathway leads to inflammatory responses in human tonsil epithelial cells, which might be a novel therapeutic approach for managing hypoxia-induced SDB resulting from AH.


2022 ◽  
Vol 5 (1) ◽  
pp. 01-04
Author(s):  
Rajiv Kumar

Infections, inflammation, immunity, and inflammatory injury are different segments of biological events and link up altogether. Route of infection has no similarity with the cellular signaling pathway of inflammation, even though when inflammation is induced by infection. The organism responds toward infection that is initiated by the pathogen via inflammation, which is a natural way of defense initiated by innate immunity as a safeguard


2018 ◽  
Vol 6 (2) ◽  
pp. 66-69 ◽  
Author(s):  
Ye Tian ◽  
Han Deng ◽  
Lei Han ◽  
Sijun Hu ◽  
Xingshun Qi

AbstractBudd-Chiari syndrome (BCS) leads to the development of liver fibrosis in most of the cases. However, the mechanism of BCS-related liver fibrosis is unclear, and it may be largely different from that induced by chronic viral hepatitis. Hepatic stellate cell (HSC) and its specific marker CD248/endosialin are known to play an important regulatory role in the development of liver fibrosis. Additionally, hypoxia microenvironment and hypoxia-inducible factor (HIF) are involved in the regulation of CD248/endosialin. Therefore, we hypothesize that hypoxia microenvironment which develops due to BCS can regulate the expression of CD248/endosialin in HSC via HIF signaling pathway, which then affects the function of HSC and development of liver fibrosis. To confirm the hypothesis, two major investigations are necessary: (1) in the BCS animal model and clinical studies, the relationship between the severity of liver fibrosis and the expression of HIF and CD248/endosialin in HSC will be explored; and (2) in thein vitrocell system, the effect of hypoxic microenvironment, HIF-1α or HIF-2α, on the expression of CD248/endosialin in HSC will be explored. It will be important to elucidate whether HIF signaling pathway regulates the expression of CD248/endosialin, thereby inducing the development of BCS-related liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document