Faculty Opinions recommendation of Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1.

Author(s):  
Robert K Herman
Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2359-2368 ◽  
Author(s):  
M. Labouesse ◽  
S. Sookhareea ◽  
H.R. Horvitz

The mutation lin-26(n156) prevents vulva formation in C. elegans by transforming the vulval precursor cells into neurons or neuroblasts. We have isolated and characterized three new lin-26 alleles, which result in embryonic lethality. These mutations cause a few other hypodermal cells to express a neural fate and most hypodermal cells to degenerate. lin-26 encodes a presumptive zinc-finger transcription factor. Our data indicate that lin-26 is required for cells to acquire the hypodermal fate.


2013 ◽  
Vol 28 (1) ◽  
pp. 34-43 ◽  
Author(s):  
L. Cochella ◽  
B. Tursun ◽  
Y.-W. Hsieh ◽  
S. Galindo ◽  
R. J. Johnston ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Genetics ◽  
2021 ◽  
Author(s):  
Anjali Sandhu ◽  
Divakar Badal ◽  
Riya Sheokand ◽  
Shalini Tyagi ◽  
Varsha Singh

Abstract Collagen enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode’s genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens- DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10- led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs levamisole and ivermectin. Upon exposure to paraquat, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 241 ◽  
Author(s):  
Jianzhong Li ◽  
Xia Chen ◽  
Xuelian Gong ◽  
Ying Liu ◽  
Hao Feng ◽  
...  

2010 ◽  
Vol 14 (5) ◽  
pp. 575-586 ◽  
Author(s):  
Ingrid E. Frohner ◽  
Christa Gregori ◽  
Dorothea Anrather ◽  
Elisabeth Roitinger ◽  
Christoph Schüller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document