scholarly journals The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.

Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 182 ◽  
Author(s):  
Monika Urbaniak ◽  
Łukasz Stępień ◽  
Silvio Uhlig

Beauvericin is a depsipeptide mycotoxin. The production of several beauvericin analogues has previously been shown among various genera among Hypocreales fungi. This includes so-called beauvenniatins, in which one or more N-methyl-phenylalanine residues is exchanged with other amino acids. In addition, a range of “unnatural” beauvericins has been prepared by a precursor addition to growth medium. Our aim was to get insight into the natural production of beauvericin analogues among different Hypocreales fungi, such as Fusarium and Isaria spp. In addition to beauvericin, we tentatively identified six earlier described analogues in the extracts; these were beauvericin A and/or its structural isomer beauvericin F, beauvericin C, beauvericin J, beauvericin D, and beauvenniatin A. Other analogues contained at least one additional oxygen atom. We show that the additional oxygen atom(s) were due to the presence of one to three N-methyl-tyrosine moieties in the depsipeptide molecules by using different liquid chromatography–mass spectrometry-based approaches. In addition, we also tentatively identified a beauvenniatin that contained N-methyl-leucine, which we named beauvenniatin L. This compound has not been reported before. Our data show that N-methyl-tyrosine containing beauvericins may be among the major naturally produced analogues in certain fungal strains.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2199-2199
Author(s):  
Nitin Kumar Agarwal ◽  
Chae Hwa Kim ◽  
Kranthi Kunkalla ◽  
Izidore S. Lossos ◽  
Francisco Vega

Abstract GLI1 is a Hedgehog (Hh) related transcription factor originally discovered as an amplified product in gliomas. Inappropriate activation of the GLI1 has been shown in many cancers including diffuse large B cell lymphoma (DLBCL). We previously showed that GLI1 mediated canonical Hh signaling is constitutive active in DLBCL and contributes to cell survival, proliferation and enhances chemotolerance. Although the importance of GLI1 in tumor development is well recognized, the molecular mechanisms controlling the transcriptional activity of GLI1 are poorly characterized. To identify regulatory components that participate in the transcriptional activity of GLI1, we explored GLI1 putative interacting proteins by liquid chromatography tandem mass spectrometry following immunoprecipitation of endogenous GLI1. We detected that the inhibitor of NF-KB kinase, IKKβ, is one of the proteins associated with GLI1 transcription factor. Here we investigate the regulatory role of IKKβ in the transcriptional activity of GLI1. We show that IKKβ regulates the transcriptional activity of GLI1 by phosphorylating GLI1 in C-terminal region and modulating its protein stability. Short stimulation of SUDHL4 and DOHH2 cells with TNF-α (20ng/mL) resulted in increased GLI1 protein levels. Similar results were observed in 293T cells transiently transfected with GLI1 and IKKβ kinase constructs. Moreover, silencing of IKKβ using siRNA and shRNAs led to decreased GLI1 protein levels and its transcriptional activity in DLBCL cell lines with constitutive activation of the NF-KB. Next, we characterized nine probable IKKβ dependent GLI1 phosphorylation sites (S543-S548, S1070, S1071 and S1074 identified by nanospray ion trap mass spectrometry) using mutational and deletions studies. We show that IKKβ phosphorylates GLI1 at Thr1074 and decreases binding between GLI1 and HECT-type E3 ubiquitin ligase (ITCH) resulting in reduced GLI1 polyubiquitination and degradation. Point mutation of Threonine 1074 to Alanine prevents IKKβ-mediated GLI1 phosphorylation and facilitates GLI1-ITCH interaction, polyubiquitination and degradation of GLI1 in the proteasome. Collectively, our data links IKKβ-mediated NF-kB signaling to the transcriptional activity of GLI1 and illustrates a novel cross talk between these two pathways. This is of clinical interest because activation of the NF-kB pathway is frequent in DLBCL and the connection between Hh and NF-kB pathways may open novel therapeutic avenues for DLBCL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1166-1166
Author(s):  
James J. Mann ◽  
Nathaniel B. Langer ◽  
Andrew Woo ◽  
Tyler B. Moran ◽  
Yocheved Schindler ◽  
...  

Abstract The zinc finger transcription factor GATA-1 is required for proliferative inhibition and terminal maturation of megakaryocytes, and is mutated in Down Syndrome Transient Myeloproliferative Disorder (TMD) and Acute Megakaryoblastic Leukemia (DS-AMKL). Yet the molecular mechanisms that regulate GATA-1 activity in megakaryopoiesis remain incompletely understood. Many transcription factors, in addition to binding DNA, make important protein-protein interactions that modulate their activity. In order to further understand GATA-1’s function, and possibly identify new factors involved in megakaryopoiesis, we purified GATA-1 containing multiprotein complexes from the murine L8057 megakaryocytic cell line. We generated stable L8057 cell lines expressing metabolically biotinylated and FLAG epitope tagged GATA-1, and then performed a tandem anti-FLAG immunoaffinity and streptavidin affinity purification. Using mass spectrometry (LC/MS/MS), we identified the known GATA-1 associated proteins Friend of GATA-1 (FOG-1), SCL, Ldb1, Runx-1/Cbf-β. SP1 and all components of the NuRD complex (which binds FOG-1) as co-purifying proteins. In addition, we reproducibly obtained several novel proteins. We previously reported the identification of the kruppel-type zinc finger transcription factor zfp148 (also called ZBP-89), and showed that it plays an essential role in megakaryopoiesis and definitive erythropoiesis. Here we report the identification of Kindlin 3 (also called URP2 for UNC-112 related protein 2), a member of a family of PH and FERM domain containing proteins that are thought to play a role in integrin-mediated processes. Expression of Kindlin 3 is restricted to hematopoietic cells, principally megakaryocytes and lymphocytes. It is first expressed at ~E9.5 during murine embryogenesis, and is abundant in fetal liver megakaryocytes by day E14.5. In order to begin to assess the role of Kindlin 3 in megakaryopoiesis in vivo, we performed morpholino-mediated knockdown of Kindlin 3 expression in CD41-GFP transgenic zebrafish embryos. In contrast to control embryos, embryos injected with Kindlin 3 specific morpholinos exhibited nearly complete loss of GFP+ thrombocytes (equivalent to mammalian megakaryocyte/platelets). Erythroid development (equivalent to mammalian primitive erythropoiesis at this stage of development) was not significantly affected, similar to embryos injected with zfp148-specific morpholinos. Given the role of integrin outside-to-inside signaling in megakaryopoiesis, we propose that Kindlin 3 may play a role linking extracellular signals to megakaryocyte maturation and growth control via GATA-1 transcription complexes. Further analysis in murine systems is underway to test this hypothesis.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lylah D Deady ◽  
Wei Li ◽  
Jianjun Sun

Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 828-828 ◽  
Author(s):  
Andrew J. Woo ◽  
Tyler B. Moran ◽  
Seong-Kyu Choe ◽  
Yocheved L. Schindler ◽  
Matthew R. Sullivan ◽  
...  

Abstract The zinc finger transcription factor GATA-1 plays an essential role in megakaryocytic and erythroid terminal maturation. Yet the molecular mechanisms that control GATA-1 function are incompletely understood. Many transcription factors, in addition to binding DNA, make important protein-protein interactions that modulate their activity. Here, we show that GATA-1 participates in stable multiprotein complexes ranging from ~100 kDa to greater than 600 kDa in murine L8057 megakaryoblastic cells. We generated stable L8057 cell lines expressing metabolically biotinylated and FLAG epitope tagged GATA-1, and performed tandem anti-FLAG immunoaffinity and streptavidin affinity purification of GATA-1 associated complexes. Mass spectrometry (LC/MS/MS) of co-purified proteins identified the known GATA-1 associated proteins Friend of GATA-1 (FOG-1), SCL, Ldb1, Runx-1/Cbf-β, SP1 and all components of the NuRD complex. In addition, we reproducibly co-purified zfp148 (also called ZBP-89/BERF-1/BFCOL-1, mtβ), a ubiquitously expressed Kruppel-type zinc finger transcription factor that binds GC-rich DNA elements. Zfp148 also co-purified with GATA-1 in erythroid (MEL) cells. Physical interaction between GATA-1 and zfp148 was confirmed by co-immunoprecipitation experiments using an anti-zfp148 antibody, and their interaction domains mapped to a C-terminal region of zfp148 and the zinc finger domain of GATA-1. Morpholino-mediated knock-down of zfp148 expression in zebrafish embryos ablates thrombocyte (equivalent to mammalian megakaryocyte/platelet) development, but does not significantly affect erythroid development (equivalent to mammalian primitive erythropoiesis at this stage of development). In vitro differentiation of murine ES cells containing homozygous disruption zfp148 by genetrap insertion (zfp148gt/gt) shows essentially normal primitive erythropoiesis, but markedly impaired megakaryocytic and definitive erythropoiesis. Preliminary chimeric studies in adult mice demonstrate a failure of zfp148gt/gt ES cells to contribute to mature erythrocytes. These findings suggest that zfp148 cooperates with GATA-1 to control differentiation of erythroid and megakaryocytic lineages. The differential requirement of zfp148 for definitive, but not primitive, erythropoiesis raises the possibility of a role in developmental hemoglobin switching.


2020 ◽  
Author(s):  
Darya Deen ◽  
Falk Butter ◽  
Michelle L. Holland ◽  
Vasiliki Samara ◽  
Jacqueline A. Sloane-Stanley ◽  
...  

ABSTRACTErythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors. Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a transcription factor that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ in primary human erythroid cells impairs erythroid differentiation, and genetic variants in the MAZ locus are associated with clinically important human erythroid traits. Taken together, these findings reveal the Zinc-finger transcription factor MAZ to be a previously unrecognised regulator of the erythroid differentiation program.


Sign in / Sign up

Export Citation Format

Share Document