Faculty Opinions recommendation of On the geometrical relationship between global longitudinal strain and ejection fraction in the evaluation of cardiac contraction.

Author(s):  
Jens-Uwe Voigt
Author(s):  
Akshar Jaglan ◽  
Sarah Roemer ◽  
Ana Cristina Perez Moreno ◽  
Bijoy K Khandheria

Abstract Aims Myocardial work (MW) is a novel parameter that can be used in a clinical setting to assess left ventricular (LV) pressures and deformation. We sought to distinguish patterns of global MW index in hypertensive vs. non-hypertensive patients and to look at differences between categories of hypertension. Methods and results Sixty-five hypertensive patients (mean age 65 ± 13 years; 30 male) and 15 controls (mean age 38 ± 12 years; 7 male) underwent transthoracic echocardiography at rest. Hypertensive patients were subdivided into Stage 1 (n = 32) and Stage 2 (n = 33) hypertension based on 2017 American College of Cardiology guidelines. Exclusion criteria were suboptimal image quality for myocardial deformation analysis, reduced ejection fraction, valvular heart disease, intracardiac shunt, and arrhythmia. Global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency were estimated from LV pressure–strain loops utilizing proprietary software from speckle-tracking echocardiography. LV systolic and diastolic pressures were estimated using non-invasive brachial artery cuff pressure. Global longitudinal strain and LV ejection fraction were preserved between the groups with no statistically significant difference, whereas there was a statically significant difference between the control and two hypertension groups in GWI (P = 0.01), GCW (P < 0.001), and GWW (P < 0.001). Conclusion Non-invasive MW analysis allows better understanding of LV response under conditions of increased afterload. MW is an advanced assessment of LV systolic function in hypertension patients, giving a closer look at the relationship between LV pressure and contractility in settings of increased load dependency than LV ejection fraction and global longitudinal strain.


Author(s):  
Marcio Silva Miguel Lima ◽  
Hector R Villarraga ◽  
Maria Cristina Donadio Abduch ◽  
Marta Fernandes Lima ◽  
Cecilia Beatriz Bittencourt Viana Cruz ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Houard ◽  
Mihaela S. Amzulescu ◽  
Geoffrey Colin ◽  
Helene Langet ◽  
Sebastian Militaru ◽  
...  

Background: Pulmonary transit time (PTT) from first-pass perfusion imaging is a novel parameter to evaluate hemodynamic congestion by cardiac magnetic resonance (cMR). We sought to evaluate the additional prognostic value of PTT in heart failure with reduced ejection fraction over other well-validated predictors of risk including the Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Methods: We prospectively followed 410 patients with chronic heart failure with reduced ejection fraction (61±13 years, left ventricular (LV) ejection fraction 24±7%) who underwent a clinical cMR to assess the prognostic value of PTT for a primary endpoint of overall mortality and secondary composite endpoint of cardiovascular death and heart failure hospitalization. Normal reference values of PTT were evaluated in a population of 40 asymptomatic volunteers free of cardiovascular disease. Results PTT was significantly increased in patients with heart failure with reduced ejection fraction as compared to controls (9±6 beats and 7±2 beats, respectively, P <0.001), and correlated not only with New York Heart Association class, cMR–LV and cMR–right ventricular (RV) volumes, cMR-RV and cMR-LV ejection fraction, and feature tracking global longitudinal strain, but also with cardiac output. Over 6-year median follow-up, 182 patients died and 200 reached the secondary endpoint. By multivariate Cox analysis, PTT was an independent and significant predictor of both endpoints after adjustment for Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Importantly in multivariable analysis, PTT in beats had significantly higher additional prognostic value to predict not only overall mortality (χ 2 to improve, 12.3; hazard ratio, 1.35 [95% CI, 1.16–1.58]; P <0.001) but also the secondary composite endpoints (χ 2 to improve=20.1; hazard ratio, 1.23 [95% CI, 1.21–1.60]; P <0.001) than cMR-LV ejection fraction, cMR-RV ejection fraction, LV–feature tracking global longitudinal strain, or RV–feature tracking global longitudinal strain. Importantly, PTT was independent and complementary to both pulmonary artery pressure and reduced RV ejection fraction<42% to predict overall mortality and secondary combined endpoints. Conclusions: Despite limitations in temporal resolution, PTT derived from first-pass perfusion imaging provides higher and independent prognostic information in heart failure with reduced ejection fraction than clinical and other cMR parameters, including LV and RV ejection fraction or feature tracking global longitudinal strain. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03969394.


Heart ◽  
2019 ◽  
Vol 105 (14) ◽  
pp. 1063-1069 ◽  
Author(s):  
Simon Ermakov ◽  
Radhika Gulhar ◽  
Lisa Lim ◽  
Dwight Bibby ◽  
Qizhi Fang ◽  
...  

ObjectiveBileaflet mitral valve prolapse (MVP) with either focal or diffuse myocardial fibrosis has been linked to ventricular arrhythmia and/or sudden cardiac arrest. Left ventricular (LV) mechanical dispersion by speckle-tracking echocardiography (STE) is a measure of heterogeneity of ventricular contraction previously associated with myocardial fibrosis. The aim of this study is to determine whether mechanical dispersion can identify MVP at higher arrhythmic risk.MethodsWe identified 32 consecutive arrhythmic MVPs (A-MVP) with a history of complex ventricular ectopy on Holter/event monitor (n=23) or defibrillator placement (n=9) along with 27 MVPs without arrhythmic complications (NA-MVP) and 39 controls. STE was performed to calculate global longitudinal strain (GLS) as the average peak longitudinal strain from an 18-segment LV model and mechanical dispersion as the SD of the time to peak strain of each segment.ResultsMVPs had significantly higher mechanical dispersion compared with controls (52 vs 42 ms, p=0.005) despite similar LV ejection fraction (62% vs 63%, p=0.42) and GLS (−19.7 vs −21, p=0.045). A-MVP and NA-MVP had similar demographics, LV ejection fraction and GLS (all p>0.05). A-MVP had more bileaflet prolapse (69% vs 44%, p=0.031) with a similar degree of mitral regurgitation (mostly trace or mild in both groups) (p>0.05). A-MVP exhibited greater mechanical dispersion when compared with NA-MVP (59 vs 43 ms, p=0.0002). Mechanical dispersion was the only significant predictor of arrhythmic risk on multivariate analysis (OR 1.1, 95% CI 1.02 to 1.11, p=0.006).ConclusionsSTE-derived mechanical dispersion may help identify MVP patients at higher arrhythmic risk.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
E Sakaguchi ◽  
A Yamada ◽  
M Hoshino ◽  
K Takada ◽  
N Hoshino ◽  
...  

Abstract Purposes We examined how changes in left ventricular (LV) global longitudinal strain (GLS) were associated with prognosis in patients with preserved LV ejection fraction (LVEF) after congestive heart failure (HF) admission. Methods We studied 123 consecutive patients (age 70 ± 15 years, 55% male) who had been hospitalized due to congestive HF with preserved LVEF (&gt; 50%). The exclusion criteria were atrial fibrillation and inadequate echo image quality for strain analyses. The patients underwent speckle-tracking echocardiography and measurement of plasma NT-ProBNP levels on the same day at the time of hospital admission as well as in the stable condition after discharge. Differences in GLS, LVEF and NT-ProBNP (delta GLS, LVEF and NT-ProBNP ; 2nd – 1st measurements) were calculated. The study end points were all-cause mortality and cardiac events. Results Mean periods of echo performance after hospitalization were 2 ±1days (1st echo) and 240 ± 289 days (2nd echo), respectively. During the follow-up (974 ± 626 days), 12 patients died and 25 patients were hospitalized because of HF worsening. In multivariate analysis, delta GLS and follow-up GLS were prognostic factors, whereas baseline and follow-up LVEF, NT-ProBNP, changes in LVEF and NT-ProBNP could not predict cardiac events. Delta GLS (p = 0.002) turned out to be the best independent prognosticator. Receiver operating characteristics analysis revealed that -0.6% of delta GLS was the optimal cut-off value to predict cardiac events and mortality (sensitivity 76%, specificity 67%, AUC 0.75). Kaplan-Meier analysis showed that patients with delta GLS more than -0.6% experienced significantly less cardiac events during the follow-up period (p &lt; 0.0001, log-rank). Conclusion A change in LV GLS after congestive HF admission was a predictor of the prognosis in patients with preserved LVEF. It would be useful to check the changes in GLS in those with preserved LVEF after discharge.


Sign in / Sign up

Export Citation Format

Share Document