Faculty Opinions recommendation of Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance.

Author(s):  
Vijay Tiwari ◽  
Sandra Schick
2014 ◽  
Vol 46 (6) ◽  
pp. 558-566 ◽  
Author(s):  
Alexandre Fort ◽  
◽  
Kosuke Hashimoto ◽  
Daisuke Yamada ◽  
Md Salimullah ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e55769 ◽  
Author(s):  
Neeraj Kumar Satija ◽  
Deepa Sharma ◽  
Farhat Afrin ◽  
Rajendra P. Tripathi ◽  
Gurudutta Gangenahalli

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Kisha Nandini Sivanathan ◽  
Darling Rojas-Canales ◽  
Shane T. Grey ◽  
Stan Gronthos ◽  
Patrick T. Coates

Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γtreated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γand UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γwere enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γimmunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.


2014 ◽  
Vol 55 (1) ◽  
pp. 109-125 ◽  
Author(s):  
Dalmuri Han ◽  
Mi Ran Choi ◽  
Kyoung Hwa Jung ◽  
Namshin Kim ◽  
Se kye Kim ◽  
...  

2020 ◽  
Vol 117 (5) ◽  
pp. 2519-2525 ◽  
Author(s):  
Peng Li ◽  
Lulu Gao ◽  
Tongxi Cui ◽  
Weiyu Zhang ◽  
Zixin Zhao ◽  
...  

The highly conserved COP9 signalosome (CSN), composed of 8 subunits (Cops1 to Cops8), has been implicated in pluripotency maintenance of human embryonic stem cells (ESCs). Yet, the mechanism for the CSN to regulate pluripotency remains elusive. We previously showed that Cops2, independent of the CSN, is essential for the pluripotency maintenance of mouse ESCs. In this study, we set out to investigate how Cops5 and Cops8 regulate ESC differentiation and tried to establish Cops5 and Cops8 knockout (KO) ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones were identified out of 127 clones, while three Cops8 KO ESC lines were established out of 70 clones. We then constructed an inducible Cops5 KO ESC line. Cops5 KO leads to decreased expression of the pluripotency marker Nanog, proliferation defect, G2/M cell-cycle arrest, and apoptosis of ESCs. Further analysis revealed dual roles of Cops5 in maintaining genomic stability of ESCs. On one hand, Cops5 suppresses the autophagic degradation of Mtch2 to direct cellular metabolism toward glycolysis and minimize reactive oxygen species (ROS) production, thereby reducing endogenous DNA damage. On the other hand, Cops5 is required for high DNA damage repair (DDR) activities in ESCs. Without Cops5, elevated ROS and reduced DDR activities lead to DNA damage accumulation in ESCs. Subsequently, p53 is activated to trigger G2/M arrest and apoptosis. Altogether, our studies reveal an essential role of Cops5 in maintaining genome integrity and self-renewal of ESCs by regulating cellular metabolism and DDR pathways.


2019 ◽  
Vol 20 (15) ◽  
pp. 3824 ◽  
Author(s):  
Larisa Ryskalin ◽  
Anderson Gaglione ◽  
Fiona Limanaqi ◽  
Francesca Biagioni ◽  
Pietro Familiari ◽  
...  

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor featuring rapid cell proliferation, treatment resistance, and tumor relapse. This is largely due to the coexistence of heterogeneous tumor cell populations with different grades of differentiation, and in particular, to a small subset of tumor cells displaying stem cell-like properties. This is the case of glioma stem cells (GSCs), which possess a powerful self-renewal capacity, low differentiation, along with radio- and chemo-resistance. Molecular pathways that contribute to GBM stemness of GSCs include mTOR, Notch, Hedgehog, and Wnt/β-catenin. Remarkably, among the common biochemical effects that arise from alterations in these pathways, autophagy suppression may be key in promoting GSCs self-renewal, proliferation, and pluripotency maintenance. In fact, besides being a well-known downstream event of mTOR hyper-activation, autophagy downregulation is also bound to the effects of aberrantly activated Notch, Hedgehog, and Wnt/β-catenin pathways in GBM. As a major orchestrator of protein degradation and turnover, autophagy modulates proliferation and differentiation of normal neuronal stem cells (NSCs) as well as NSCs niche maintenance, while its failure may contribute to GSCs expansion and maintenance. Thus, in the present review we discuss the role of autophagy in GSCs metabolism and phenotype in relationship with dysregulations of a variety of NSCs controlling pathways, which may provide novel insights into GBM neurobiology.


Sign in / Sign up

Export Citation Format

Share Document