Faculty Opinions recommendation of Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.

Author(s):  
Anne Dorrance
2010 ◽  
Vol 120 (9) ◽  
pp. 3350-3364 ◽  
Author(s):  
Michael G. Usher ◽  
Sheng Zhong Duan ◽  
Christine Y. Ivaschenko ◽  
Ryan A. Frieler ◽  
Stefan Berger ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Jonatan Barrera-Chimal ◽  
Sebastian M Lechner ◽  
Soumaya E Moghrabi ◽  
Peter Kolkhof ◽  
Frédéric Jaisser

Introduction: Patients who survive an episode of acute kidney injury (AKI) are at high risk of de novo chronic kidney disease (CKD) development. Pharmacological mineralocorticoid receptor (MR) antagonism is useful to prevent CKD after a single episode of ischemic AKI in the rat. Objective: Test the involvement of myeloid MR in the development of kidney fibrosis after an ischemic AKI episode. Methods: We included 18 male C57/B6 mice that were divided in: sham, renal ischemia for 22.5 min and IR plus treatment with the non-steroidal MR antagonist finerenone (10 mg/kg) at -48, -24 and -1 h before IR. MR inactivation in myeloid cells (MR MyKO ) was achieved by crossing mice with the MR alleles flanked by loxP sites (MR f/f ) with mice expressing the Cre recombinase under the LysM promoter activity. In MR f/f and MR MyKO mice we induced renal IR of 22.5 min or sham surgery. The mice were followed-up during 4 weeks to test for AKI to CKD transition. In another set of mice, the macrophages were sorted from kidneys after 24 h of reperfusion and flow cytometry characterization or mRNA extraction was performed. Thyoglycolate elicited peritoneal macrophages were used for in vitro studies. Results: The progression of AKI to CKD after 4 weeks of renal ischemia in the untreated C57/B6 and MR f/f mice was characterized by a 50% increase in plasma creatinine, a 2-fold increase in the mRNA levels of TGF-β and fibronectin as well as by severe tubule-interstitial fibrosis. The mice that received finerenone or MR MyKO mice were protected against these alterations. Increased expression of M2-anti-inflamatory markers in kidney-isolated macrophages from finerenone-treated or MR MyKO mice was observed. The inflammatory population of Ly6C high macrophages was reduced by 50%. In peritoneal macrophages in culture, MR inhibition promoted increased IL-4 receptor expression and activation, facilitating macrophage polarization to an M2 phenotype. Conclusion: MR antagonism or myeloid MR deficiency facilitates macrophage polarization to a M2, anti-inflammatory phenotype after kidney IR, preventing maladaptive repair and chronic kidney fibrosis and dysfunction. MR inhibition acts through the modulation of IL-4 receptor signaling to facilitate macrophage phenotype switching.


2014 ◽  
Vol 306 (1) ◽  
pp. E75-E90 ◽  
Author(s):  
Emmanuelle Kuhn ◽  
Christine Bourgeois ◽  
Vixra Keo ◽  
Say Viengchareun ◽  
Adeline Muscat ◽  
...  

The mineralocorticoid receptor (MR) exerts proadipogenic and antithermogenic effects in vitro, yet its in vivo metabolic impact remains elusive. Wild type (WT) and transgenic (Tg) mice overexpressing human MR were subjected to standard chow (SC) or high-fat diet (HFD) for 16 wk. Tg mice had a lower body weight gain than WT animals and exhibited a relative resistance to HFD-induced obesity. This was associated with a decrease in fat mass, an increased population of smaller adipocytes, and an improved glucose tolerance compared with WT animals. Quantitative RT-PCR studies revealed decreased expression of PPARγ2, a master adipogenic gene, and of glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1, consistent with an impaired local glucocorticoid signaling in adipose tissues (AT). This paradoxical resistance to HFD-induced obesity was not related to an adipogenesis defect since differentiation capacity of Tg preadipocytes isolated from stroma-vascular fractions was unaltered, suggesting that other nonadipocyte factors might compromise AT development. Although AT macrophage infiltration was not different between genotypes, Tg mice exhibited a distinct macrophage polarization, as revealed by FACS analysis and CD11c/CD206 expression studies. We further demonstrated that Tg macrophage-conditioned medium partially impaired preadipocyte differentiation. Therefore, we propose that modification of M1/M2 polarization of hMR-overexpressing macrophages could account in part for the metabolic phenotype of Tg mice. Collectively, our results provide evidence that MR exerts a pivotal immunometabolic role by controlling adipocyte differentiation processes directly but also indirectly through macrophage polarization regulation. Our findings should be taken into account for the pharmacological treatment of metabolic disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Camila Manrique-Acevedo ◽  
Jaume Padilla ◽  
Huma Naz ◽  
Makenzie L. Woodford ◽  
Thaysa Ghiarone ◽  
...  

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.


Sign in / Sign up

Export Citation Format

Share Document