scholarly journals Mineralocorticoid Receptor in Myeloid Cells Mediates Angiotensin II-Induced Vascular Dysfunction in Female Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Camila Manrique-Acevedo ◽  
Jaume Padilla ◽  
Huma Naz ◽  
Makenzie L. Woodford ◽  
Thaysa Ghiarone ◽  
...  

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Ying Li ◽  
Dale Kinzenbaw ◽  
Mary Modrick ◽  
Lecia Epping ◽  
John T Harty ◽  
...  

Angiotensin II (Ang II) promotes vascular disease and hypertension, in part, by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Although SOCS3 regulates this pathway in the immune system, its role in vascular disease and hypertension is unknown. In this study, we investigated the role of SOCS3 in a model of Ang II-induced vascular disease. To exam direct effects, carotid arteries from wild-type (WT) and SOCS3 haplodeficient (SOCS3 +/- ) mice were incubated with Ang II for 22 hrs, followed by examination of endothelial function using acetylcholine (Ach). Relaxation to Ach was similar in all arteries incubated with vehicle. A low concentration of Ang II (1 nmol/L) did not affect Ach-induced vasodilation in WT mice, but reduced that of SOCS3 +/- mice by ~50% (P<0.05). Ang II-induced impairment was prevented by inhibitors of STAT3, IL-6, NF-κB, or a scavenger of superoxide. Responses to nitroprusside were similar in all groups. We also tested the impact of SOCS3 in vivo by systemically infusing Ang II (1.4 mg/kg per day) for 14 days via osmotic mini-pumps. Ach-induced vasodilation in carotid and resistance arteries in brain from WT mice was reduced by ~60% (P<0.05). Surprisingly, deficiency in SOCS3 prevented the majority of Ang II-induced endothelial dysfunction without affecting the pressor response to Ang II. Lethally irradiated WT mice reconstituted with SOCS3 +/- bone marrow were protected from Ang II-induced endothelial dysfunction (P<0.05), while reconstitution of irradiated SOCS3 +/- mice with WT bone marrow exacerbated Ang II-induced vascular dysfunction (P<0.05). WT into WT and SOCS3 +/- into SOCS3 +/- bone marrow chimeras exhibited vascular function consistent with non-irradiated controls. The pressor response to Ang II was reduced by ~50% in WT mice reconstituted with bone marrow from SOCS3 +/- mice (P<0.05). These data suggest SOCS3 exerts divergent local versus systemic effects on Ang II-induced vascular dysfunction. In the face of SOCS3 deficiency, bone marrow-derived cells protect against Ang II-induced vascular dysfunction and hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Quaisar Ali ◽  
Yonnie Wu ◽  
Tadashi Inagami ◽  
Tahir Hussain

Angiotensin II acting via Angiotensin II type 2 receptors (AT2Rs) is believed to be protective against blood pressure increase and affects renal function under pathophysiological condition. Recently we have observed that stimulation of AT2Rs in male obese Zucker rats has shifted the two opposing arms of renin angiotensin system (RAS) i.e. ACE-Ang II-AT1 vs ACE2/Ang-(1-7)-Mas. Evidence suggests that estrogen regulates RAS, including AT2R in female mice. We hypothesized that AT2R has a gender specific regulation of RAS. In the present study, we investigated the role of AT2Rs in regulating RAS components in male and female mice. Kidney cortex from AT2R knockout (AT2RKO) male and female mice and wild type (WT) with similar background (C57BL/6) of 20 weeks of age were used in the study. The cortical ACE expression (ng ACE/μg tissue) was significantly increased in AT2RKO mice (3±0.02) compared to WT males (1.9±0.02). LC/MS analysis of cortical tissue revealed that Ang II was also significantly increased in AT2RKO mice (WT: 31±3, AT2RKO: 47±3 fmoles/mg tissue). Deletion of AT2R significantly increased AT1R (204%, 204 of 100) expression and had no effect on renin activity compared to WT males. The cortical expression of ACE2 activity (WT: 113±8, AT2RKO: 40±11, RFU/min), Ang-(1-7) levels (WT: 7.3±1.4, AT2RKO: 3±0.8 fmoles/mg tissue) and Mas receptor (AT2RKO: 54±15, % of WT) was significantly decreased in AT2RKO males compared to WT. The cortical expression of the AT2R and MasR was 2-fold greater in WT females compared to WT male. The renin activity (WT: 32±2, AT2RKO: 21±0.3, RFU/min) and MasR expression (WT: 187.5±55, AT2KO: 47±9) was significantly decreased in AT2RKO females compared to the female WT. Interestingly, Ang-(1-7) level (WT: 5.7±0.7, AT2RKO 2.6±0.7 fmoles/mg tissue) was decreased but no changes in ACE or ACE2 activity was observed in AT2KO females compared to their WT, suggesting a role of non-ACE2 pathway. This study suggests that AT2R regulates ACE/ACE2 ratio-Ang II-AT1R expression negatively only in males, whereas in females, it regulates Ang-(1-7) potentially via non-ACE2 pathway. Such changes indicate a gender specific mechanisms potentially associated with AT2R-mediated regulation of renal function and blood pressure control.


Author(s):  
Tong Wei ◽  
Jing Gao ◽  
Chenglin Huang ◽  
Bei Song ◽  
Mengwei Sun ◽  
...  

Objective: Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1β secretion in myeloid SIRT3 knockout (SIRT3 − / − ) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow–derived macrophages induces IL-1β production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1β secretion. Furthermore, the blockade of IL-1β from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3 −/− ) mice exhibited reduced IL-1β production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. Conclusions: SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.


2016 ◽  
Vol 311 (1) ◽  
pp. H146-H156 ◽  
Author(s):  
Ying Li ◽  
Dale A. Kinzenbaw ◽  
Mary L. Modrick ◽  
Lecia L. Pewe ◽  
Frank M. Faraci

Carotid artery disease is a major contributor to stroke and cognitive deficits. Angiotensin II (Ang II) promotes vascular dysfunction and disease through mechanisms that include the IL-6/STAT3 pathway. Here, we investigated the importance of suppressor of cytokine signaling 3 (SOCS3) in models of Ang II-induced vascular dysfunction. We examined direct effects of Ang II on carotid arteries from SOCS3-deficient (SOCS3+/−) mice and wild-type (WT) littermates using organ culture and then tested endothelial function with acetylcholine (ACh). A low concentration of Ang II (1 nmol/l) did not affect ACh-induced vasodilation in WT but reduced that of SOCS3+/−mice by ∼50% ( P < 0.05). In relation to mechanisms, effects of Ang II in SOCS3+/−mice were prevented by inhibitors of STAT3, IL-6, NF-κB, or superoxide. Systemic Ang II (1.4 mg/kg per day for 14 days) also reduced vasodilation to ACh in WT. Surprisingly, SOCS3 deficiency prevented most of the endothelial dysfunction. To examine potential underlying mechanisms, we performed bone marrow transplantation. WT mice reconstituted with SOCS3+/−bone marrow were protected from Ang II-induced endothelial dysfunction, whereas reconstitution of SOCS3+/−mice with WT bone marrow exacerbated Ang II-induced effects. The SOCS3 genotype of bone marrow-derived cells did not influence direct effects of Ang II on vascular function. These data provide new mechanistic insight into the influence of SOCS3 on the vasculature, including divergent effects depending on the source of Ang II. Bone marrow-derived cells deficient in SOCS3 protect against systemic Ang II-induced vascular dysfunction.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1327
Author(s):  
Kalhara R. Menikdiwela ◽  
Latha Ramalingam ◽  
Mostafa M. Abbas ◽  
Halima Bensmail ◽  
Shane Scoggin ◽  
...  

Overactivation of the renin–angiotensin system (RAS) during obesity disrupts adipocyte metabolic homeostasis and induces endoplasmic reticulum (ER) stress and inflammation; however, underlying mechanisms are not well known. We propose that overexpression of angiotensinogen (Agt), the precursor protein of RAS in adipose tissue or treatment of adipocytes with Angiotensin II (Ang II), RAS bioactive hormone, alters specific microRNAs (miRNA), that target ER stress and inflammation leading to adipocyte dysfunction. Epididymal white adipose tissue (WAT) from B6 wild type (Wt) and transgenic male mice overexpressing Agt (Agt-Tg) in adipose tissue and adipocytes treated with Ang II were used. Small RNA sequencing and microarray in WAT identified differentially expressed miRNAs and genes, out of which miR-690 and mitogen-activated protein kinase kinase 3 (MAP2K3) were validated as significantly up- and down-regulated, respectively, in Agt-Tg, and in Ang II-treated adipocytes compared to respective controls. Additionally, the direct regulatory role of miR-690 on MAP2K3 was confirmed using mimic, inhibitors and dual-luciferase reporter assay. Downstream protein targets of MAP2K3 which include p38, NF-κB, IL-6 and CHOP were all reduced. These results indicate a critical post-transcriptional role for miR-690 in inflammation and ER stress. In conclusion, miR-690 plays a protective function and could be a useful target to reduce obesity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica L. Faulkner ◽  
Emily Lluch ◽  
Simone Kennard ◽  
Galina Antonova ◽  
Iris Z. Jaffe ◽  
...  

Abstract Background Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared to males. However, the role for increased activation of ECMR by aldosterone in the absence of a comorbid condition is yet to be explored. The current study hypothesized that increased ECMR activation induced by elevated aldosterone production predisposes healthy female mice to endothelial dysfunction. Method Vascular reactivity was assessed in aortic rings from wild-type (WT) and ECMR KO (KO) mice fed either a normal salt (NSD, 0.4% NaCl) or sodium-restricted diet (SRD, 0.05% NaCl) for 28 days. Results SRD elevated plasma aldosterone levels as well as adrenal CYP11B2 and angiotensin II type 1 receptor (AT1R) expressions in female, but not male, WT mice. In baseline conditions (NSD), endothelial function, assessed by vascular relaxation to acetylcholine, was higher while vascular contractility to phenylephrine, serotonin, and KCl lower in female than male WT mice. SRD impaired endothelial function and increased vascular contractility in female, but not male, WT mice effectively ablating the baseline sex differences. NOS inhibition with LNAME ablated endothelial relaxation to a higher extent in male than female mice on NSD and ablated differences in acetylcholine relaxation responses between NSD- and SRD-fed females, indicating a role for NO in SRD-mediated endothelial function. In association, SRD significantly reduced vascular NOX4 expression in female, but not male, mice. Lastly, selective deletion of ECMR protected female mice from SRD-mediated endothelial dysfunction and increased vascular contractility. Conclusion Collectively, these data indicate that female mice develop aldosterone-induced endothelial dysfunction via endothelial MR-mediated reductions in NO bioavailability. In addition, these data support a role for ECMR to promote vascular contractility in female mice in response to sodium restriction.


2012 ◽  
Vol 113 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Sophocles Chrissobolis ◽  
Botond Banfi ◽  
Christopher G. Sobey ◽  
Frank M. Faraci

Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg−1·day−1 for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2−/y) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1+/y) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1−/y) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2−/y mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Aurelie Nguyen Dinh Cat ◽  
Glaucia E Callera ◽  
Tayze T Antunes ◽  
Augusto C Montezano ◽  
Ying He ◽  
...  

Aldosterone (aldo) plays a role in obesity and cardiovascular diseases, such as hypertension. We previously demonstrated that adipocyte-derived factors regulate vascular function and vascular smooth muscle cells signaling. Moreover, adipocytes express aldosterone synthase (CYP11B2) and produce aldo. The mineralocorticoid receptor (MR), which is responsible for aldo signaling, is also found in these cells, but its role in regulating adipose tissue interactions with the vasculature is unknown. In this study, we investigated mechanisms whether MR activation in adipocytes regulates vascular reactivity. Conditional transgenic mice that overexpress MR in an adipocyte-specific manner were studied. Vascular reactivity of resistance mesenteric arteries to acetylcholine (Ach), sodium nitroprusside and phenylephrine (Phe), in the absence or presence of fat conditioned medium (Fcm) from control and adipocyte overexpressing MR (MROE) mice, was performed by myography. In basal conditions, endothelial dysfunction was not observed in MROE or control (Ctr) mice. However, exposure of arteries from control mice to Fcm from MROE mice induces endothelial dysfunction (Ach 10 -6 M: 77.5±9.6% no Fcm vs. 49.8±7.5% Fcm, p<0.05), an effect blocked by N-acetyl-cysteine (an antioxidant) (Ach 10 -6 M: 82.2±6.6%). Resistance arteries from MROE mice had decreased Phe-induced contraction, compared to control mice (Phe 10 -5 M: 2.7±0.2 mN/mm Ctr vs. 1.7±0.2 mN/mm MROE, p<0.05). Rho Kinase activity, which regulates vascular contraction, is decreased in arteries and adipo tissue from MROE (mesenteric arteries, Ctr: 100±16.2% vs. MROE: 31.1±6.1%, arbitrary units, p<0.01; adipose tissue, Ctr: 100±12.6% vs. MROE: 51.3±9.3%, arbitrary units, p<0.01). In conclusion, MR in adipocytes may play an important role in the regulation of vascular function, through redox-sensitive pathways and activation of Rho kinase. Our study identifies novel mechanisms linking vascular/adipose tissue biology and aldo/MR activation, which may be particularly important in vascular dysfunction associated with hypertension and hyperaldosteronism.


Sign in / Sign up

Export Citation Format

Share Document