Faculty Opinions recommendation of The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells.

Author(s):  
David Wiest ◽  
Shawn Fahl
Keyword(s):  
EMBO Reports ◽  
2015 ◽  
Vol 16 (5) ◽  
pp. 638-653 ◽  
Author(s):  
Takeshi Nitta ◽  
Ryunosuke Muro ◽  
Yukiko Shimizu ◽  
Sachiko Nitta ◽  
Hiroyo Oda ◽  
...  
Keyword(s):  

2020 ◽  
Vol 14 (1) ◽  
pp. 242-252 ◽  
Author(s):  
Anneke Wilharm ◽  
Helena C. Brigas ◽  
Inga Sandrock ◽  
Miguel Ribeiro ◽  
Tiago Amado ◽  
...  

AbstractγδT cells represent the majority of lymphocytes in several mucosal tissues where they contribute to tissue homoeostasis, microbial defence and wound repair. Here we characterise a population of interleukin (IL) 17-producing γδ (γδ17) T cells that seed the testis of naive C57BL/6 mice, expand at puberty and persist throughout adulthood. We show that this population is foetal-derived and displays a T-cell receptor (TCR) repertoire highly biased towards Vγ6-containing rearrangements. These γδ17 cells were the major source of IL-17 in the testis, whereas αβ T cells mostly provided interferon (IFN)-γ in situ. Importantly, testicular γδ17 cell homoeostasis was strongly dependent on the microbiota and Toll-like receptor (TLR4)/IL-1α/IL-23 signalling. We further found that γδ17 cells contributed to tissue surveillance in a model of experimental orchitis induced by intra-testicular inoculation of Listeria monocytogenes, as Tcrδ−/− and Il17−/− infected mice displayed higher bacterial loads than wild-type (WT) controls and died 3 days after infection. Altogether, this study identified a previously unappreciated foetal-derived γδ17 cell subset that infiltrates the testis at steady state, expands upon puberty and plays a crucial role in local tissue immune surveillance.


2021 ◽  
Vol 83 (1) ◽  
Author(s):  
Christian John Hurry ◽  
Alexander Mozeika ◽  
Alessia Annibale

AbstractDescribing the anti-tumour immune response as a series of cellular kinetic reactions from known immunological mechanisms, we create a mathematical model that shows the CD4$$^{+}$$ + /CD8$$^{+}$$ + T-cell ratio, T-cell infiltration and the expression of MHC-I to be interacting factors in tumour elimination. Methods from dynamical systems theory and non-equilibrium statistical mechanics are used to model the T-cell dependent anti-tumour immune response. Our model predicts a critical level of MHC-I expression which determines whether or not the tumour escapes the immune response. This critical level of MHC-I depends on the helper/cytotoxic T-cell ratio. However, our model also suggests that the immune system is robust against small changes in this ratio. We also find that T-cell infiltration and the specificity of the intra-tumour TCR repertoire will affect the critical MHC-I expression. Our work suggests that the functional form of the time evolution of MHC-I expression may explain the qualitative behaviour of tumour growth seen in patients.


2021 ◽  
Vol 9 (1) ◽  
pp. e001615
Author(s):  
Rachel A Woolaver ◽  
Xiaoguang Wang ◽  
Alexandra L Krinsky ◽  
Brittany C Waschke ◽  
Samantha M Y Chen ◽  
...  

BackgroundAntitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences.MethodsWe developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes.ResultsWe discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status.ConclusionsWe reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document