Faculty Opinions recommendation of High diversity in the TCR repertoire of GAD65 autoantigen-specific human CD4+ T cells.

Author(s):  
Peter Van Endert
2015 ◽  
Vol 194 (6) ◽  
pp. 2531-2538 ◽  
Author(s):  
Anne Eugster ◽  
Annett Lindner ◽  
Mara Catani ◽  
Anne-Kristin Heninger ◽  
Andreas Dahl ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 235.1-236
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
C. Gerstner ◽  
S. Turcinov ◽  
K. Chemin ◽  
...  

Background:Autoimmunity to citrullinated autoantigens forms a critical component of disease pathogenesis in rheumatoid arthritis (RA). Presence of anti-citrullinated protein antibodies (ACPAs) in patients has high diagnostic value. Recently, several citrullinated antigen specific CD4+T cells have been described. However, detailed studies of their T-cell receptor usage and in-vivo profile suffer from the disadvantage that these cells are present at very low frequencies. In this context, we here present a pipeline for TCR repertoire analysis of antigen-specific CD4+T cells from RA patients, including both citrulline and influenza (control) specificities using in-vitro peptide challenge induced-cell expansion.Objectives:To enable studies of the T cell repertoire of citrullinated antigen-specific CD4+T cells in rheumatoid arthritisMethods:Peripheral blood mononuclear cells (PBMCs) (n=7) and synovial fluid mononuclear cells (SFMCs) (n=5) from HLA-DR*0401-postive RA patients were cultured in the presence of citrullinated Tenascin C peptide cocktails or influenza peptides (positive control). Citrulline reactive cells were further supplemented with recombinant human IL-15 and IL-7 on day 2. All cultures were replenished with fresh medium on day 6 and rIL-2 was added every 2 days from then. Assessment of proportion of peptide-HLA-tetramer positive cells was performed using flow cytometry whereby individual antigen-specific CD4+T cells were sorted into 96-well plates containing cell lysis buffer, followed by PCR-based alpha/beta TCR sequencing. TCR sequencing data was demultiplexed and aligned for TCR gene usage using MiXCR. Some tetramer positive cells were sorted into complete medium containing human IL-2 and PHA for expansion of antigen-specific cells. Cells were supplemented with irradiated allogenic PBMCs (30 times number of antigen specific cells). Clones of antigen specific CD4+T cells were further subjected to tetramer staining to confirm expansion of cells.Results:As evidenced by increase in frequency of tetramer positive CD4+T cells, in vitro peptide stimulation resulted in expansion of both influenza specific (Fig. 1a) and citrullinated antigen specific (Fig. 1b) CD4+T cells. Polyclonal in-vitro expansion of tenascin C tetramer positive sorted cells followed by tetramer staining further confirmed antigen specificity and enrichment for antigen specific CD4+T cells after polyclonal stimulation (Fig.1c). TCR repertoire analysis in PB and SF dataset from the first patient showed clonal expansion of influenza specific cells in both sites. Synovial fluid had more diversity of expanding clones as compared to paired PB, with few expanded clones being shared among SF and PB. We observed a more diverse TCR repertoire in citrulline specific CD4+T cells. We also observed sharing of TCR alpha chains among different citrulline specific CD4+T cell clones.Fig. 1In-vitroexpansion of antigen specific CD4+T cells:Conclusion:This method provides a highly suitable approach for investigating TCR specificities of antigen specific CD4+T cells under conditions of low cell yields. Building on this dataset will allow us to assess specific features of TCR usage of autoreactive T cells in RA.PBMCs were cultured in presence of (a) influenza (HA, MP54) and (b) citrullinated tenascin peptides. The proportion of antigen specific CD4+T cells was assessed using HLA-class II tetramer staining. We observed an increase in frequency of (a) Infleunza specific cells (red dots in upper left and lower right quadrants) and (b) citrullinated tenascin C specific cells (red dots in lower right quadrant), at day 13 post culture as compared to day 3. (c) Sorting of citrullinated tenascin specific CD4+T cells, followed by PHA expansion resulted in visible increase in proportion of citrullinated tenascin specific CD4+T cells.Disclosure of Interests:Ravi kumar: None declared, Niyaz Yoosuf: None declared, Christina Gerstner: None declared, Sara Turcinov: None declared, Karine Chemin: None declared, Vivianne Malmström Grant/research support from: VM has had research grants from Janssen Pharmaceutica


2018 ◽  
Vol 45 (7) ◽  
pp. 905-914 ◽  
Author(s):  
Keiichi Sakurai ◽  
Kazuyoshi Ishigaki ◽  
Hirofumi Shoda ◽  
Yasuo Nagafuchi ◽  
Yumi Tsuchida ◽  
...  

Objective.Shared epitope (SE) alleles are the most significant genetic susceptibility locus in rheumatoid arthritis (RA); however, their target populations in CD4+ T cells are not well elucidated. We analyzed the association between SE alleles and the T cell receptor (TCR) repertoire diversity of naive and memory CD4+ T cells using next-generation sequencing (NGS).Methods.The TCR beta chains in naive and memory CD4+ T cells from the peripheral blood of 22 patients with RA and 18 age- and sex-matched healthy donors (HD) were analyzed by NGS. The Renyi entropy was used to evaluate TCR repertoire diversity and its correlations with SE alleles and other variables were examined. Serum cytokine levels were measured by multiplex ELISA.Results.The TCR repertoire diversity in memory CD4+ T cells was reduced in SE allele-positive patients with RA compared with HD, and showed a significant negative correlation with the SE allele dosage in RA. The TCR repertoire diversity of naive and memory T cells was also negatively correlated with disease activity, and the SE allele dosage and disease activity were independently associated with reduced TCR repertoire diversity. TCR repertoire diversity showed a significant positive correlation with the serum interleukin 2 levels.Conclusion.SE alleles and disease activity were negatively correlated with the TCR repertoire diversity of CD4+ T cells in RA. Considering the pivotal role of CD4+ T cells in RA, restoring the altered TCR repertoire diversity will provide a potential RA therapeutic target.


2020 ◽  
Author(s):  
Amédée Renand ◽  
Iñaki Cervera-Marzal ◽  
Laurine Gil ◽  
Chuang Dong ◽  
Erwan Kervagoret ◽  
...  

AbstractBackground & AimsIn most autoimmune disorders, crosstalk of B cells and CD4 T cells results in the accumulation of autoantibodies. In autoimmune hepatitis (AIH), the presence of anti-Soluble Liver Antigen (SLA or SepSecs) autoantibodies is associated with significantly reduced overall survival, but the associated autoreactive CD4 T cells have not been characterized yet. Here we isolated and deeply characterized SLA-specific CD4 T cells in AIH patients.MethodsWe used brief ex vivo restimulation with overlapping SLA-derived peptides to isolate and phenotype circulating SLA-specific CD4 T cells, and integrative single-cell RNA-seq (scRNA-seq) to characterize their transcriptome and TCR repertoire in n=5 AIH patients. SLA-specific CD4 T cells were tracked in peripheral blood through TCR sequencing, to identify their phenotypic niche. We further characterized disease-associated peripheral blood T cells by high content flow cytometry in an additional cohort of n=46 AIH patients and n=18 non-alcoholic steatohepatitis (NASH) controls.ResultsAutoreactive SLA-specific CD4 T cells were only detected in patients with anti-SLA autoantibodies and had a memory PD-1+CXCR5−CCR6−CD27+ phenotype. ScRNA-seq revealed their pro-inflammatory/B-Helper profile (IL21, IFNG, TIGIT, CTLA4, NR3C1, CD109, KLRB1 and CLEC2D). Autoreactive TCR clonotypes were restricted to the memory PD-1+CXCR5− CD4 T cells. This subset was significantly increased in the blood of AIH patients and supported B cell differentiation through IL-21. Finally, we identified a specific phenotype (PD-1+CD38+CD27+CD127−CXCR5−) of CD4 T cells linked to disease activity and IgG response during AIH.ConclusionsThis work provides for the first time a deep characterization of rare circulating autoreactive CD4 T cells and the identification of their peripheral reservoir in AIH. We also propose a generic phenotype of pathogenic CD4 T cells related to AIH disease activity.


2005 ◽  
Vol 35 (6) ◽  
pp. 1987-1994 ◽  
Author(s):  
Siegfried Kohler ◽  
Ulf Wagner ◽  
Matthias Pierer ◽  
Sonja Kimmig ◽  
Birgit Oppmann ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1.3-1
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
A. Bartoletti ◽  
A. Avik ◽  
B. Raposo ◽  
...  

Background:ANCA-associated vasculitis (AAV) with proteinase 3 (PR3) ANCA is genetically associated with HLA-DP [1], is often relapsing in nature, and has a predisposition for kidneys, lungs and ear-nose-throat involvement [2]. Despite the presence of PR3+ANCA, indicating CD4+T-cell help in the disease, the knowledge about autoreactive CD4+T cells is scarce. Activated T cells have been shown at site of inflammation [3] and involvement of proinflammatory cytokines in circulation is also reported [4, 5].Objectives:Identification of autoreactive T cells may help to identify the drivers of the immune responses and chronicity. We therefore aimed to investigate PR3-specific CD4+T-cell responses in peripheral blood of AAV patients with a focus on both phenotype and T-cell receptor (TCR) repertoires.Methods:The study included sixty-six patients: 26 with active PR3 autoantibody+ AAV, 21 with inactive but PR3+ AAV and 19 with inactive PR3- AAV. In-vitro cultures with PR3 protein were established to assess antigen-specific cytokine responses in a 3-color fluorospot assay. Deep immunophenotyping was performed by flow cytometry. Antigen-responsive CD4+ T cells were isolated and single cell TCRαβ sequences were generated and analyzed from PR3+ AAV patients (n=5) using a previously published protocol [6].Results:PBMCs from AAV patients demonstrated an HLA-DP associated cytokine responses to PR3 stimulation including IFN-γ and IL-10, but not IL-17A. This T-cell autoreactivity was found to be confined to a highly differentiated CD4+ T cell population characterized by perforin and GPR56 expression, implicating a cytotoxic feature of the response. Active disease involved a reduction in expression of several markers associated with cytotoxicity amongst the CD4+GPR56+ T cells. Their frequency was also negatively associated with the doses of prednisolone. A similar phenotype was shared with T cells activated by human cytomegalovirus (HCMV) peptides in the same patient cohort. Single cell sequencing of paired alpha beta T-cell receptors (TCRs) revealed different patterns of gene usage between PR3 and HCMV reactive T cells. Moreover, we could identify shared (public) PR3-reactive T-cell clones between different HLA-DPB1*04:01+ patients.Conclusion:PR3 is an autoantigen which provokes ANCA responses in AAV patients. Our study identified PR3-reactive CD4+ T cells at the level of their phenotype and TCR repertoire. The autoreactive CD4+ T cells, present in both active and inactive disease, implicate chronic antigen exposure and the persistence of long-lived T-cell clones. The presence of public autoreactive clones between HLA-DPB1*04:01+ patients suggests an active role for these cells in pathogenesis of AAV and validates the link with predisposed genotype.References:[1]Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCA-associated vasculitis. New England Journal of Medicine. 2012; 367(3):214-223.[2]Kumar Sharma R, Lövström B, Gunnarsson I, Malmström V. Proteinase 3 autoreactivity in Anti-Neutrophil Cytoplasmic Antibody-associated vasculitis–immunological versus clinical features. Scandinavian Journal of Immunology. 2020:e12958.[3]Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JWCJAr, et al. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? 2010; 12(1):204.[4]Hoffmann JC, Patschan D, Dihazi H, Müller C, Schwarze K, Henze E, et al. Cytokine profiling in anti neutrophil cytoplasmic antibody-associated vasculitis: a cross-sectional cohort study. Rheumatology international. 2019; 39(11):1907-1917.[5]Berti A, Warner R, Johnson K, Cornec D, Schroeder D, Kabat B, et al. Circulating Cytokine Profiles and ANCA Specificity in Patients with ANCA-Associated Vasculitis. Arthritis & rheumatology (Hoboken, NJ). 2018; 70(7):1114.[6]Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nature biotechnology. 2014; 32(7):684-692.Disclosure of Interests:None declared


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A848-A848
Author(s):  
Xiaopeng Sun ◽  
Margaret Axelrod ◽  
Yu Wang ◽  
Sanchez Violeta ◽  
Paula Gonzalez-Ericsson ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) are increasingly used to treat advanced malignancy but can be associated with immune related adverse events (irAE). Here we present a case report of a rare dermatologic toxicity occurring in a melanoma patient with isolated brain metastasis. After surgical resection, the patient was treated with ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) combination therapy followed by single agent nivolumab with ongoing, excellent response. During nivolumab, the patient developed an erythema nodosum (EN)-like irAE. The condition resolved after potassium iodine treatment and nivolumab therapy was resumed. To understand the pathogenesis of this irAE, we examined samples from this patient's blood, brain metastasis and tissue biopsy of the EN toxicity.MethodsRNA and T cell receptor (TCR) sequencing on the patient's brain metastasis and site of irAE were performed. We also performed RNA sequencing on 3 non-ICI EN patients. RNA in situ hybridization (RNAish) for CD4, CD8 and granzyme B, and the most abundant TCR identified was conducted on the patient's site of toxicity. Single cell RNA/TCR sequencing was carried out on the patient's peripheral blood mononuclear cells (PBMC) at baseline, 3 weeks after ipilimumab and nivolumab combination therapy, during EN toxicity and after resolution.ResultsRNAish showed that the most abundant TCR (20% of total TCR sequencing reads at the site of toxicity) colocalized with CD4 at the site of toxicity. According to CIBERSORT deconvolution, the site of toxicity had high memory activated CD4 T cells and low M2 macrophage infiltration, which is different from the brain metastasis and non-ICI-induced EN cases. Compared to non-ICI EN, the EN skin biopsy was also enriched for interferon response and inflammation related genes. In the peripheral blood, cytotoxic CD8 T cells clonally expanded during EN toxicity, accompanied by a decrease in naïve/memory CD4 T cells. The TCR repertoire in the site of toxicity did not overlap with that in the tumor or PBMC.ConclusionsWe found oligoclonal memory activated CD4 T cells are enriched at the site of toxicity, suggesting their association with EN toxicity. The unique TCR repertoire, gene expression profile and immune cell composition at the site of toxicity could indicate that the EN toxicity is distinct from the anti-tumor immunity and analogous non-ICI autoimmunity. Future work will focus on determining the antigen for this irAE and determining its relevancy to other skin toxicities and EN autoimmune conditions.Ethics ApprovalIRB 100178 and 161485ConsentApproval under IRB 100178


2021 ◽  
Author(s):  
Akul Singhania ◽  
Paige Dubelko ◽  
Rebecca Kuan ◽  
William D Chronister ◽  
Kaylin Muskat ◽  
...  

The century-old Mycobacterium bovis Bacillus Calmette-Guerin (BCG) remains the only licensed vaccine against tuberculosis (TB). Despite this, there is still a lot to learn about the immune response induced by BCG, both in terms of phenotype and specificity. Here, we investigated immune responses in adult individuals pre and 8 months post BCG vaccination. We specifically determined changes in gene expression, cell subset composition, DNA methylome, and the TCR repertoire induced in PBMCs and CD4 memory T cells associated with antigen stimulation by either BCG or a Mycobacterium tuberculosis (Mtb)-derived peptide pool. Following BCG vaccination, we observed increased frequencies of CCR6+ CD4 T cells, which includes both Th1* and Th17 subsets, and mucosal associated invariant T cells (MAITs). A large number of immune response genes and pathways were upregulated post BCG vaccination with similar patterns observed in both PBMCs and memory CD4 T cells, thus suggesting a substantial role for CD4 T cells in the cellular response to BCG. These upregulated genes and associated pathways were also reflected in the DNA methylome. We described both qualitative and quantitative changes in the BCG-specific TCR repertoire post vaccination, and importantly found evidence for similar TCR repertoires across different subjects. The immune signatures defined herein can be used to track and further characterize immune responses induced by BCG, and can serve as reference for benchmarking novel vaccination strategies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2793-2793 ◽  
Author(s):  
Karthik Nath ◽  
Soi C. Law ◽  
Muhammed B. Sabdia ◽  
Lilia Merida De Long ◽  
Mohamed Shanavas ◽  
...  

Introduction. Intra-tumoral T-cell infiltration is associated with R-CHOP responsiveness in aggressive B-cell lymphoma (Keane, Lancet Haem 2015). These patients also have a broad (i.e. diverse) intra-tumoral T-cell receptor (TCR) repertoire with a ~20% superior survival compared to those with a narrow (i.e. clonal) repertoire after R-CHOP therapy. Here, the major contributor to the TCR clonal expansion were CD8+ T cells (Keane, CCR 2017). Paradoxically, our recent results in Follicular Lymphoma (FL) (Tobin, JCO in press) found that clonal T-cell expansions were markedly enriched in those patients that experienced progression of disease within 24 months (POD24). Given that FL is a histological subtype associated with a tumor microenvironment distinct from DLBCL including numerous CD4+ T-follicular helper cells (TFH), we now expand upon these findings by comparing TCR repertoires across histological subtypes. We then established whether the TCR repertoire in FL is related to differential TCR clonal expansions between different T-cell subsets and immune checkpoints. Finally, the overlap between tissue and blood TCR repertoires was investigated. Methods. Firstly, unbiased, high-throughput TCRβ sequencing (ImmunoSEQ, Adaptive Biotechnologies) was compared in 164 FFPE tissues (12 healthy nodes, 40 FL, 88 DLBCL, and as a comparator tumor known to be sensitive to checkpoint blockade and to have a high neoantigen burden, 24 melanoma tissues). Next, to determine the contribution of individual T-cell subsets to overall clonality, a further 21 fresh de-aggregated/cryopreserved FL tumor samples were FACS sorted into four T-cell groupings: CD8+ cytotoxic T-lymphocytes (CTLs), CD4+ TFH, CD4+ regulatory T-cells (TREGs) and 'other' (non-TFH/TREG) CD4+ T-cells. Flow cytometry quantified the expression of the checkpoints LAG3, TIM3 and PD1. Then, 5 FL paired tissue/blood samples were tested for shared TCR clones. Results. FL exhibited strikingly reduced TCR repertoire clonality (higher diversity) compared to DLBCL, melanoma and healthy lymph nodes (Fig 1A). Analysis of de-aggregated sorted nodal T-cells revealed a more complex TCR repertoire. The outcome measure was median clonality index (CIx ranging from '0' or minimal, to '1' or maximal clonality). Large T-cell clones in FL (CIx=0.12) predominantly resided within the CTL subset (34% all T-cells). By contrast, there was marked T-cell diversity in TFH (CIx=0.04; 27% all T-cells), TREG (CIx=0.02; 7% all T-cells) and 'other' CD4+ T-cells (CIx=0.02; 32% all T-cells) (Fig 1B). The CTL population had a bimodal expression for PD1 (+51%/-49%), a marker in FL that has been shown to remain functionally active unless co-expressed with LAG3 and/or TIM3 (Yang, Oncotarget 2017). These dual-checkpoint expressing CTLs have reduced capacity to produce cytokines or lytic granules (i.e. they are 'exhausted'). Notably, 54% of the PD1+ CTLs co-expressed either LAG3 or TIM3. Put together, these results are consistent with expanded CTL clones that are frequently functionally exhausted. In contrast, TFH, TREG and 'other' CD4+ T-cells had a low expression of LAG3 and TIM3, although PD1 was frequently found (as expected, particularly in the TFH cells). Finally, in paired tissue/blood samples, there was weak overlap between the circulating and intra-tumoral TCR repertoire in CTLs and TFH T-cells. Conclusion. Although FL has a markedly less clonal TCR repertoire compared to DLBCL, melanoma and even healthy nodes, this result is misleading. Detailed analysis on sorted intra-tumoral T-cell subsets in FL revealed large clonal expansions in CTLs, with approximately half of these classified as functionally exhausted (dual-positive for PD1 and LAG3 and/or TIM3), a state potentially amenable to reversal by dual-checkpoint blockade. The explanation for TCR repertoire diversity lies in CD4+ T-cells (representing approximately two-thirds of T-cells, including the large TFH subset). T-cells in blood did not reflect FL tissue T-cell clones, further highlighting the need for sorted intra-tumoral nodal tissues to accurately assess TCR repertoires in FL. Further characterization of the neo-antigenic targets that CTL clones potentially recognize is required. These results have implications for therapeutic vaccine design and selective recruitment of patients for immune checkpoint blockade. Disclosures Keane: MSD: Consultancy; Gilead: Consultancy; Celgene: Consultancy; Roche: Consultancy, Other: Travel Grant; BMS: Research Funding. Gandhi:Roche: Honoraria, Other: Travel Support; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Honoraria, Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiva Dahal-Koirala ◽  
Louise Fremgaard Risnes ◽  
Ralf Stefan Neumann ◽  
Asbjørn Christophersen ◽  
Knut E. A. Lundin ◽  
...  

Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3β, and paired CDR3α:CDR3β motif candidates. Among these, a previously known conserved CDR3β R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3β motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRβ sequences of which 145, 102 and 78 belonged to TCRα, TCRβ and paired TCRαβ sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.


Sign in / Sign up

Export Citation Format

Share Document