Faculty Opinions recommendation of Remote activation of host cell DNA synthesis in uninfected cells signaled by infected cells in advance of virus transmission.

Author(s):  
Nancy Sawtell ◽  
Jessica Doll
2004 ◽  
Vol 72 (1) ◽  
pp. 451-460 ◽  
Author(s):  
Whitney Greene ◽  
Yangming Xiao ◽  
Yanqing Huang ◽  
Grant McClarty ◽  
Guangming Zhong

ABSTRACT Both anti- and proapoptotic activities have been reported to occur during chlamydial infection. To reconcile the apparent controversy, we compared host cell apoptotic responses to infection with 17 different chlamydial serovars and strains. None of the serovars caused any biologically significant apoptosis in the infected host cells. Host cells in chlamydia-infected cultures can continue to undergo DNA synthesis and mitosis. Chlamydia-infected cells are resistant to apoptosis induction, although the extent of the antiapoptotic ability varied between serovars. These observations have demonstrated that an anti- but not proapoptotic activity is the prevailing event in chlamydia-infected cultures.


2020 ◽  
Vol 5 (Special) ◽  

The coronavirus illness (COVID-19) is caused by a new recombinant SARS-CoV (SARS-CoV) virus (SARS-CoV-2). Target cell infection by SARS-CoV is mediated by the prickly protein of the coronavirus and host cell receptor, enzyme 2 converting angiotensin (ACE2) [3]. Similarly, a recent study suggests that cellular entry by SARS-CoV-2 is dependent on both ACE2 as well as type II transmembrane axial protease (TMPRSS2) [4]. This means that detection of ACE2 and PRSS2 expression in human tissues can predict potential infected cells and their respective effects in COVID-19 patients [1].


1976 ◽  
Vol 20 (1) ◽  
pp. 142-156 ◽  
Author(s):  
M G Wovcha ◽  
C S Chiu ◽  
P K Tomich ◽  
G R Greenberg
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 784
Author(s):  
Solène Lerolle ◽  
Natalia Freitas ◽  
François-Loïc Cosset ◽  
Vincent Legros

The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.


2021 ◽  
Vol 9 (6) ◽  
pp. 1144
Author(s):  
Isabel Marcelino ◽  
Philippe Holzmuller ◽  
Ana Coelho ◽  
Gabriel Mazzucchelli ◽  
Bernard Fernandez ◽  
...  

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.


1966 ◽  
Vol 124 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Jadwiga Koziorowska ◽  
Krzysztof Włodarski

A morphologic study has been made on KB cells infected with various doses of vaccinia as to DNA synthesis and mitosis. Determination of mitotic indices revealed that the mitotic cell pool depended on the proportion of infected cells and the time after infection. By cytologic examination neither mitotic lesions were found nor an accumulation of mitotic cells at any one stage of mitosis was demonstrated. Radioautographs of infected cultures have shown that the frequency of cells labeled over nuclei was significantly increased as compared with control cultures. Following the greatest dose of virus (multiplicity of 20 PFU/cell) the ratio of cells synthesizing DNA to mitotic cells increased from 45:5 at 5 hr to 50:0 at 50 hr. Concommittant with the appearance of this disparity between the DNA-synthesizing cell pool and mitotic cell pool the nuclei of cells became "lightly" labeled. Following the lowest dose of virus (multiplicity of 0.0002 PFU/cell) the increase of the fraction of mitotic cells was proportional to the increase of the fraction of cells which were labeled over nuclei.


Virology ◽  
1996 ◽  
Vol 224 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Wade A. Bresnahan ◽  
Istvan Boldogh ◽  
E.Aubrey Thompson ◽  
Thomas Albrecht

2015 ◽  
Vol 89 (11) ◽  
pp. 6057-6066 ◽  
Author(s):  
Colin Davies ◽  
Chris M. Brown ◽  
Dana Westphal ◽  
Joanna M. Ward ◽  
Vernon K. Ward

ABSTRACTMany viruses replicate most efficiently in specific phases of the cell cycle, establishing or exploiting favorable conditions for viral replication, although little is known about the relationship between caliciviruses and the cell cycle. Microarray and Western blot analysis of murine norovirus 1 (MNV-1)-infected cells showed changes in cyclin transcript and protein levels indicative of a G1phase arrest. Cell cycle analysis confirmed that MNV-1 infection caused a prolonging of the G1phase and an accumulation of cells in the G0/G1phase. The accumulation in G0/G1phase was caused by a reduction in cell cycle progression through the G1/S restriction point, with MNV-1-infected cells released from a G1arrest showing reduced cell cycle progression compared to mock-infected cells. MNV-1 replication was compared in populations of cells synchronized into specific cell cycle phases and in asynchronously growing cells. Cells actively progressing through the G1phase had a 2-fold or higher increase in virus progeny and capsid protein expression over cells in other phases of the cell cycle or in unsynchronized populations. These findings suggest that MNV-1 infection leads to prolonging of the G1phase and a reduction in S phase entry in host cells, establishing favorable conditions for viral protein production and viral replication. There is limited information on the interactions between noroviruses and the cell cycle, and this observation of increased replication in the G1phase may be representative of other members of theCaliciviridae.IMPORTANCENoroviruses have proven recalcitrant to growth in cell culture, limiting our understanding of the interaction between these viruses and the infected cell. In this study, we used the cell-culturable MNV-1 to show that infection of murine macrophages affects the G1/S cell cycle phase transition, leading to an arrest in cell cycle progression and an accumulation of cells in the G0/G1phase. Furthermore, we show that MNV replication is enhanced in the G1phase compared to other stages of the cell cycle. Manipulating the cell cycle or adapting to cell cycle responses of the host cell is a mechanism to enhance virus replication. To the best of our knowledge, this is the first report of a norovirus interacting with the host cell cycle and exploiting the favorable conditions of the G0/G1phase for RNA virus replication.


Sign in / Sign up

Export Citation Format

Share Document