Faculty Opinions recommendation of Membrane-Tethered Intracellular Domain of Amphiregulin Promotes Keratinocyte Proliferation.

Author(s):  
Robert Coffey ◽  
Bhuminder Singh
2016 ◽  
Vol 136 (2) ◽  
pp. 444-452 ◽  
Author(s):  
Stefan W. Stoll ◽  
Philip E. Stuart ◽  
Sylviane Lambert ◽  
Alberto Gandarillas ◽  
Laure Rittié ◽  
...  

2016 ◽  
Vol 5 (07) ◽  
pp. 4686 ◽  
Author(s):  
Harsha M. R.* ◽  
Baidyanath Mishra ◽  
Chaithra C. S. ◽  
Vivekananda Ramana

Psoriasis is a chronic inflammatory skin disorder which affects more than 3% of the population worldwide and is characterized histopathologically by proliferative imbalance and abnormal differentiation of epidermal keratinocytes and inflammatory infiltration. Hence, loss of regulation in keratinocyte proliferation and differentiation makes it a typical pathophysiological phenomenon in psoriasis manifestation. Traditionally, herbal products used in treating psoriasis have shown promising effects in several clinical studies with relatively fewer adverse effects, higher remission and lower recurrence rates. In our previous study, the polyherbal formulation of InnoVision’s test material was found to induce AQP-3 expression in keratinocyte cell line. In the present study, we screened the study material for its anti-proliferative properties using cultured human HACAT keratinocyte cell model. Our experimental results suggest that InnoVision’s Psoriderm Cream is a promising source which can be effectively used as an herb-based topical agent for psoriasis treatment. Evidence is provided that inhibition of keratinocyte proliferation and improving skin hydration via induction of aquaporin-3 stimulation is the possible underlying mechanism for the observed anti-psoriatic action of study material. 


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Sign in / Sign up

Export Citation Format

Share Document