Faculty Opinions recommendation of Regulated selection of germinal-center cells into the memory B cell compartment.

Author(s):  
Louis Justement
2016 ◽  
Vol 17 (7) ◽  
pp. 861-869 ◽  
Author(s):  
Ryo Shinnakasu ◽  
Takeshi Inoue ◽  
Kohei Kometani ◽  
Saya Moriyama ◽  
Yu Adachi ◽  
...  

2001 ◽  
Vol 8 (3-4) ◽  
pp. 223-234 ◽  
Author(s):  
Evangelia Notidis ◽  
Shailaja Hande ◽  
Tim Manser

We investigated the role of apoptosis in the development of B cell memory by analyzing the (p-azophenylarsonate) Ars response in a line of A strain mice in which expression of human Bcl-2 was enforced in the B cell compartment. Previous studies of the Ars immune response in these A. Bcl-2 mice, demonstrated that a large percentage of the antibodies expressed by the Ars induced memory B cell compartment had accumulated point mutations via somatic hypermutation that increased their affinity for both Ars and the autoantigen DNA (“dual reactive” antibodies). This was in sharp contrast to normal A strain mice which displayed no dual reactive B cells in their Ars induced memory B cell compartment. These data suggested that interference with apoptotic pathways regulated by Bcl-2 allows developing memory B cells that have acquired autoreactivity to bypass a peripheral tolerance checkpoint. Further studies of these mice, reported here, demonstrate that enforced expression of Bcl-2 does not alter serum antibody affinity maturation nor positive selection of B cells expressing somatically mutated antibody with an increased affinity for Ars. Moreover, the somatic hypermutation process was unaffected in A. Bcl-2 mice. Thus, enforced expression of Bcl-2 in A. Bcl-2 mice appears to selectively alter a negative selection process that operates during memory B cell differentiation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2019 ◽  
Vol 101 ◽  
pp. 131-144 ◽  
Author(s):  
Maartje J. Levels ◽  
Cynthia M. Fehres ◽  
Lisa G.M. van Baarsen ◽  
Nathalie O.P. van Uden ◽  
Kristine Germar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document