Faculty Opinions recommendation of Basolateral to central amygdala neural circuits for appetitive behaviors.

Author(s):  
Kent Berridge
Neuron ◽  
2017 ◽  
Vol 93 (6) ◽  
pp. 1464-1479.e5 ◽  
Author(s):  
Joshua Kim ◽  
Xiangyu Zhang ◽  
Shruti Muralidhar ◽  
Sarah A. LeBlanc ◽  
Susumu Tonegawa

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vijay K Samineni ◽  
Jose G Grajales-Reyes ◽  
Gary E Grajales-Reyes ◽  
Eric Dameon Tycksen ◽  
Bryan A Copits ◽  
...  

Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.


2021 ◽  
Author(s):  
Vijay K Samineni ◽  
Jose G. Grajales-Reyes ◽  
Gary E Grajales-Reyes ◽  
Eric Tycksen ◽  
Bryan A Copits ◽  
...  

AbstractItch is an unpleasant sensation that elicits robust scratching and active avoidance. However, the identity of the cells and neural circuits that organize this information remains elusive. Here we show the necessity and sufficiency of itch-activated neurons in the central amygdala (CeA) for both itch sensation and active avoidance. Further, we show that itch-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of itch-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send a critical projection to the periaqueductal gray to mediate modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.


2000 ◽  
Vol 84 (3) ◽  
pp. 1186-1193 ◽  
Author(s):  
Peter T. Morgan ◽  
Ray Perrins ◽  
Philip E. Lloyd ◽  
Klaudiusz R. Weiss

Intrinsic and extrinsic neuromodulation are both thought to be responsible for the flexibility of the neural circuits (central pattern generators) that control rhythmic behaviors. Because the two forms of modulation have been studied in different circuits, it has been difficult to compare them directly. We find that the central pattern generator for biting in Aplysia is modulated both extrinsically and intrinsically. Both forms of modulation increase the frequency of motor programs and shorten the duration of the protraction phase. Extrinsic modulation is mediated by the serotonergic metacerebral cell (MCC) neurons and is mimicked by application of serotonin. Intrinsic modulation is mediated by the cerebral peptide-2 (CP-2) containing CBI-2 interneurons and is mimicked by application of CP-2. Since the effects of CBI-2 and CP-2 occlude each other, the modulatory actions of CBI-2 may be mediated by CP-2 release. Although the effects of intrinsic and extrinsic modulation are similar, the neurons that mediate them are active predominantly at different times, suggesting a specialized role for each system. Metacerebral cell (MCC) activity predominates in the preparatory (appetitive) phase and thus precedes the activation of CBI-2 and biting motor programs. Once the CBI-2s are activated and the biting motor program is initiated, MCC activity declines precipitously. Hence extrinsic modulation prefacilitates biting, whereas intrinsic modulation occurs during biting. Since biting inhibits appetitive behavior, intrinsic modulation cannot be used to prefacilitate biting in the appetitive phase. Thus the sequential use of extrinsic and intrinsic modulation may provide a means for premodulation of biting without the concomitant disruption of appetitive behaviors.


Author(s):  
Jérôme Wahis ◽  
Damien Kerspern ◽  
Ferdinand Althammer ◽  
Angel Baudon ◽  
Stéphanie Goyon ◽  
...  

SUMMARYOxytocin orchestrates social and emotional behaviors through modulation of neural circuits in brain structures such as the central amygdala (CeA). The long-standing dogma is that oxytocin signaling in the central nervous system occurs exclusively via direct actions on neurons. However, several findings over the last decades showed that astrocytes actively participate in the modulation of neuronal circuits. Here, we investigate the degree of astrocytes’ involvement in oxytocin functions. Using astrocyte’ specific gain and loss of function approaches, we demonstrate that CeA astrocytes not only directly respond to oxytocin, but are actually necessary for its effects on neuronal circuits and ultimately behavior. Our work identifies astrocytes as a crucial cellular substrate underlying the promotion of a positive emotional state by oxytocin. These results further corroborate that astrocytes are key regulators of neuronal circuits activity by responding to specific neuropeptidergic inputs, and opens up new perspectives to understand how neuromodulators gate brain functions.


2001 ◽  
Vol 120 (5) ◽  
pp. A177-A177
Author(s):  
S SHARP ◽  
J YU ◽  
J GUZMAN ◽  
J XUE ◽  
H COOKE ◽  
...  

2020 ◽  
Author(s):  
Anna Gerlicher ◽  
Merel Kindt

A cue that indicates imminent threat elicits a wide range of physiological, hormonal, autonomic, cognitive, and emotional fear responses in humans and facilitates threat-specific avoidance behavior. The occurrence of a threat cue can, however, also have general motivational effects and affect behavior. That is, the encounter with a threat cue can increase our tendency to engage in general avoidance behavior that does neither terminate nor prevent the threat-cue or the threat itself. Furthermore, the encounter with a threat-cue can substantially reduce our likelihood to engage in behavior that leads to rewarding outcomes. Such general motivational effects of threat-cues on behavior can be informative about the transition from normal to pathological anxiety and could also explain the development of comorbid disorders, such as depression and substance abuse. Despite the unmistakable relevance of the motivational effects of threat for our understanding of anxiety disorders, their investigation is still in its infancy. Pavlovian-to-Instrumental transfer is one paradigm that allows us to investigate such motivational effects of threat cues. Here, we review studies investigating aversive transfer in humans and discuss recent results on the neural circuits mediating Pavlovian-to-Instrumental transfer effects. Finally, we discuss potential limitations of the transfer paradigm and future directions for employing Pavlovian-to-Instrumental transfer for the investigation of motivational effects of fear and anxiety.


Sign in / Sign up

Export Citation Format

Share Document