Faculty Opinions recommendation of Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

Author(s):  
Joao Braz
Keyword(s):  
2017 ◽  
Vol 142 (5) ◽  
pp. 721-733 ◽  
Author(s):  
Karen Haenraets ◽  
Edmund Foster ◽  
Helge Johannssen ◽  
Vinnie Kandra ◽  
Noémie Frezel ◽  
...  
Keyword(s):  

Author(s):  
Alan Steele ◽  
Cheryl Schramm

Between 2008 and 2010 an introductory circuit analysis course for second year engineering students had its lectures recorded (2008 was audio only, other years were by video) and the recordings were made available to registered students as a supplemental resource. Attendance to lectures was still required. In 2011 an introductory programming course was recorded in a similar way. In each of these offerings the students were anonymously surveyed at the end of the course using an online survey tool with most questions using a five point Likert category scale. The survey looked at the perceived usefulness of the recordings, the approach to watching and the impact on attendance. The responses showed strong support to having video lecture capture and the reported use of the videos was to watch selected material. There was a difference between the courses on the impact on attendance, with the circuit analysis course indicated little impact on attendance, whereas the responses from the other course indicates more missed lectures due to the availability of recordings.


Author(s):  
Roberto Loiero ◽  
Federico Jorreto ◽  
Jorge Garzón ◽  
Pablo Minayo

The aim of this paper is to analyze mixed electrified areas where there is a mix of AC/DC electrification. The grounding strategy is different. DC electrification is designed to have the rail isolated from ground and AC usually has the rail and other metallic parts such as structures and OCS poles connected to ground. This approach in mixed areas provokes the corrosion of the elements directly connected to ground, namely structure foundations or metallic rods or even the rail. This mixed environment presents challenges both for safety and corrosion management. On one side it would be a good anticorrosion practice to limit the number of elements that are directly grounded and connect them all by an aerial ground wire. On the safety side it has to be ensured that the voltages in fault condition are compliant with the standards (namely EN 50122). The authors have developed a parametric analysis to understand the impact of different grounding scenarios such as variations of the grounding impedance, impact of the reduction of the grounding impedance of a single element (i.e. the impact of a connection to the grounding mesh of a station or substation), an analysis of the maximum distance between grounding elements along the alignment ensuring that the rail to ground voltages are compliant to EN 50122-1. The methodology proposed is based on the modelling of the line considering electrical elements such as the rail impedance, grounding impedance for different elements (substations, stations, OCS poles) rail to ground impedance and OCS wires characteristics. Once the electrical model is obtained, a parametric analysis for each of the scenarios is performed to determine the impact of a particular variation into the general model obtaining the results of the short circuit analysis along the line. Results of these analyses will be presented as well as the proposed next steps and conclusions.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Sign in / Sign up

Export Citation Format

Share Document