scholarly journals Faculty Opinions recommendation of Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain.

Author(s):  
Søren Warming
2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2020 ◽  
Vol 6 (15) ◽  
pp. eaaz0051 ◽  
Author(s):  
Xinyu Ling ◽  
Bingteng Xie ◽  
Xiaoqin Gao ◽  
Liying Chang ◽  
Wei Zheng ◽  
...  

Site-specific chemical conjugation of proteins can enhance their therapeutic and diagnostic utility but has seldom been applied to CRISPR-Cas9, which is a rapidly growing field with great therapeutic potential. The low efficiency of homology-directed repair remains a major hurdle in CRISPR-Cas9–mediated precise genome editing, which is limited by low concentration of donor DNA template at the cleavage site. In this study, we have developed methodology to site-specifically conjugate oligonucleotides to recombinant Cas9 protein containing a genetically encoded noncanonical amino acid with orthogonal chemical reactivity. The Cas9-oligonucleotide conjugates recruited an unmodified donor DNA template to the target site through base pairing, markedly increasing homology-directed repair efficiency in both human cell culture and mouse zygotes. These chemically modified Cas9 mutants provide an additional tool, one that is complementary to chemically modified nucleic acids, for improving the utility of CRISPR-Cas9–based genome-editing systems.


2019 ◽  
Vol 116 (42) ◽  
pp. 20959-20968 ◽  
Author(s):  
Sundaram Acharya ◽  
Arpit Mishra ◽  
Deepanjan Paul ◽  
Asgar Hussain Ansari ◽  
Mohd. Azhar ◽  
...  

Genome editing using the CRISPR/Cas9 system has been used to make precise heritable changes in the DNA of organisms. Although the widely used Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants have been efficiently harnessed for numerous gene-editing applications across different platforms, concerns remain regarding their putative off-targeting at multiple loci across the genome. Here we report that Francisella novicida Cas9 (FnCas9) shows a very high specificity of binding to its intended targets and negligible binding to off-target loci. The specificity is determined by its minimal binding affinity with DNA when mismatches to the target single-guide RNA (sgRNA) are present in the sgRNA:DNA heteroduplex. FnCas9 produces staggered cleavage, higher homology-directed repair rates, and very low nonspecific genome editing compared to SpCas9. We demonstrate FnCas9-mediated correction of the sickle cell mutation in patient-derived induced pluripotent stem cells and propose that it can be used for precise therapeutic genome editing for a wide variety of genetic disorders.


2020 ◽  
Author(s):  
Krishna S. Ghanta ◽  
Craig C. Mello

ABSTRACTCRISPR genome editing has revolutionized genetics in many organisms. In the nematode Caenorhabditis elegans one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring co-selection strategies. Here we show that melting double stranded DNA (dsDNA) donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits. We describe troubleshooting strategies that enable consistently high editing efficiencies resulting, for example, in up to 100 independent GFP knock-ins from a single injected animal. These efficiencies make C. elegans by far the easiest metazoan to genome edit, removing barriers to the use and adoption of this facile system as a model for understanding animal biology.


Author(s):  
Haojie Sun ◽  
Jie Zheng ◽  
Ming Yi ◽  
You Wan

2020 ◽  
Author(s):  
Hong You ◽  
Johannes U. Mayer ◽  
Rebecca L. Johnston ◽  
Haran Sivakumaran ◽  
Shiwanthi Ranasinghe ◽  
...  

AbstractCRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. Here we report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. A CRISPR/Cas9-vector encoding gRNA X5 or X7 was introduced by electroporation into eggs recovered from livers of experimentally infected mice. Simultaneously, eggs were transfected with a ssODN donor encoding a stop codon in all six frames, flanked by 50 nt-long 5’- and 3’-homology arms matching the predicted Cas9-catalyzed double stranded break at X5 or X7. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programmed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, a significant decrease in circumoval granuloma size was observed in the lungs of the mice. Notably, there was an enhanced Th2 response involving IL-4, −5, −10, and-13 induced by lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, −13 and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.Author SummarySchistosomiasis is the most devastating of the parasitic helminth diseases. Currently, no vaccines are available for human use and praziquantel is the only available treatment raising considerable concern that drug resistance will develop. A major challenge faced by the schistosomiasis research community is the lack of suitable tools to effectively characterise schistosome gene products as potential new drug and/or vaccine targets. We introduced CRISPR/Cas9 mediated editing into S. mansoni eggs targeting the gene encoding acetylcholinesterase (AChE), a recognized anthelminthic drug target. We found that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). This platform provides a unique opportunity to generate precise loss-of-function insertions into the schistosome genome. We pre-screened the activity of two guide RNAs of the AChE gene and compared/validated the mutation efficacy using next-generation sequencing analysis at the genomic level and phenotypic modifications at the protein level. That resulted in reduced AChE activity observed in AChE-edited eggs, and decreased lung circumoval granuloma size in mice injected with those edited eggs. The CRISPR/Cas9-genome editing system we established in this study provides a pivotal platform for gene functional studies to identify and test new anti-schistosome intervention targets, which can be extended to the other human schistosome species and other important parasitic helminths.


Sign in / Sign up

Export Citation Format

Share Document