Faculty Opinions recommendation of Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD.

Author(s):  
Jens-Michael Schröder
2020 ◽  
Vol 318 (3) ◽  
pp. G542-G553 ◽  
Author(s):  
Yilan Zeng ◽  
Mei Luo ◽  
Liwei Pan ◽  
Yuan Chen ◽  
Siqi Guo ◽  
...  

A lack of sunlight exposure, residence in the northern latitudes, and dietary vitamin D insufficiency are coprevalent with metabolic syndrome (MetS), Type 2 diabetes (T2D), and nonalcoholic fatty liver diseases (NAFLD), implying a potential causality and underlying mechanism. Whether vitamin D supplementation or treatment can improve these disorders is controversial, in part, because of the absence of large-scale trials. Experimental investigations, on the other hand, have uncovered novel biological functions of vitamin D in development, tumor suppression, and immune regulation, far beyond its original role as a vitamin that maintained calcium homeostasis. While the large intestine harbors massive numbers of microbes, the small intestine has a minimal quantity of bacteria, indicating the existence of a gating system located in the distal region of the small intestine that may restrain bacterial translocation to the small intestine. Vitamin D receptor (VDR) was found to be highly expressed at the distal region of small intestine, where the vitamin D signaling promotes innate immunity, including the expression of α-defensins by Paneth cells, and maintains the intestinal tight junctions. Thus, a new hypothesis is emerging, indicating that vitamin D deficiency may impair the intestinal innate immunity, including downregulation of Paneth cell defensins, leading to bacterial translocation, endotoxemia, systemic inflammation, insulin resistance, and hepatic steatosis. Here, we review the studies for vitamin D for innate immunity and metabolic homeostasis, and we outline the clinical trials of vitamin D for mitigating MetS, T2D, and NAFLD.


2018 ◽  
Author(s):  
Joanna Kowalska ◽  
Iwona Zielen-Zynek ◽  
Justyna Nowak ◽  
Karolina Kulik-Kupka ◽  
Agnieszka Bedkowska-Szczepanska ◽  
...  

2018 ◽  
Author(s):  
Alena Andreeva ◽  
Olga Belyaeva ◽  
Anna Bystrova ◽  
Elena Bajenova ◽  
Tatiana Karonova

Author(s):  
Hamidreza Totonchi ◽  
Ramazan Rezaei ◽  
Shokoofe Noori ◽  
Negar Azarpira ◽  
Pooneh Mokarram ◽  
...  

Introduction: Several studies have assessed the association between the vitamin D receptor (VDR) polymorphism and risk of metabolic syndrome (MetS). However, the results were inconsistent and inconclusive. Therefore, we conducted a meta-analysis to clarify the exact association between the vitamin D receptor (VDR) polymorphisms and the risk of MetS. Methods: All accessible studies reporting the association between the FokI (rs2228570) or / and TaqI (rs731236) or/and BsmI (rs1544410) or/and ApaI (rs7975232 polymorphisms of the Vitamin D Receptor and susceptibility to MetS published prior to February 2019 were systematically searched in Web of Science, Scopus, and PubMed. After that, Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated to evaluate the strength of the association in five genetic models. Results: A total of 9 articles based on four gene variations, and comprising 3348 participants with 1779 metabolic syndrome patients were included. The overall results suggested a significant association between BsmI (rs1544410) polymorphism and MetS susceptibility in recessive model (OR, 0.72, 95% CI, 0.55-0.95, fixed effect model), allelic model (OR, 0.83, 95% CI, 0.72-0.95, fixed effect model), and bb vs BB (OR, 0.65, 95% CI, 0.46-0.93, fixed effect). However, no significant association was identified between TaqI (rs731236) polymorphism, ApaI (rs7975232) polymorphism, and FokI (rs2228570) polymorphism and MetS. Conclusion: This meta-analysis suggested an association between the BsmI (rs1544410) polymorphism and MetS. Indeed, BsmI (rs1544410) acts as a protective factor in the MetS. As a result, the VDR gene could be regarded as a promising pharmacological and physiological target in prevention or treatment of the MetS.


2020 ◽  
Vol 20 (8) ◽  
pp. 1282-1294
Author(s):  
Meroua Bouchemal ◽  
Djennat Hakem ◽  
Malha Azzouz ◽  
Chafia Touil-Boukoffa ◽  
Dalila Mezioug

Background: Metabolic syndrome (MetS) is a combination of metabolic disorders with increased risks for several diseases, such as cardiovascular diseases and diabetes. It is associated with the presence of various inflammatory molecules. Vitamin D plays an important role in the regulation of metabolism homeostasis. Objective: The main goal of this work is to investigate vitamin D levels among Algerian MetS patients and its possible outcomes on key molecules of the immune response, as well, the immunomodulatory effects of its active metabolite. Methods: We evaluated vitamin D status by the electrochemiluminescence method, Nitric Oxide (NO) levels by the Griess method and Matrix Metalloproteinases (MMPs) activities such as MMP-2 and MMP-9 by zymography in plasma of patients and healthy controls (HC). The immunomodulatory effects of the active metabolite of vitamin D (α-25 (OH)2D3) on the production of NO, IL-6, IL-10, TGF- β and s-CTLA-4 were assessed by Griess method and ELISA, in peripheral blood mononuclear cells (PBMCs) of Algerian MetS patients and HC. MMPs activities were also determined ex-vivo, while iNOS expression was assessed by immunofluorescence staining. Results: Severe vitamin D deficiency was registered in Algerian MetS patients. The deficiency was found to be associated with an elevated in vivo NO production and high MMPs activity. Interestingly, α-25 (OH)2D3 declined the NO/iNOS system and IL-6 production, as well as MMPs activities. However, the ex-vivo production of IL-10, TGF-β increased in response to the treatment. We observed in the same way, the implication of s-CTLA-4 in MetS, which was markedly up-regulated with α-25 (OH)2D3. Conclusion: Our report indicated the relationship between MetS factors and Vitamin D deficiency. The ex-vivo findings emphasize its impact on maintaining regulated immune balance.


Sign in / Sign up

Export Citation Format

Share Document