scholarly journals Faculty Opinions recommendation of Deleterious mutations show increasing negative effects with age in Drosophila melanogaster.

Author(s):  
Thomas Flatt
BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Martin I. Brengdahl ◽  
Christopher M. Kimber ◽  
Phoebe Elias ◽  
Josephine Thompson ◽  
Urban Friberg

Abstract Background In order for aging to evolve in response to a declining strength of selection with age, a genetic architecture that allows for mutations with age-specific effects on organismal performance is required. Our understanding of how selective effects of individual mutations are distributed across ages is however poor. Established evolutionary theories assume that mutations causing aging have negative late-life effects, coupled to either positive or neutral effects early in life. New theory now suggests evolution of aging may also result from deleterious mutations with increasing negative effects with age, a possibility that has not yet been empirically explored. Results To directly test how the effects of deleterious mutations are distributed across ages, we separately measure age-specific effects on fecundity for each of 20 mutations in Drosophila melanogaster. We find that deleterious mutations in general have a negative effect that increases with age and that the rate of increase depends on how deleterious a mutation is early in life. Conclusions Our findings suggest that aging does not exclusively depend on genetic variants assumed by the established evolutionary theories of aging. Instead, aging can result from deleterious mutations with negative effects that amplify with age. If increasing negative effect with age is a general property of deleterious mutations, the proportion of mutations with the capacity to contribute towards aging may be considerably larger than previously believed.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 681-693 ◽  
Author(s):  
David Chavarrías ◽  
Carlos López-Fanjul ◽  
Aurora García-Dorado

Abstract The effect of 250 generations of mutation accumulation (MA) on the second chromosome competitive viability of Drosophila melanogaster was analyzed both in homozygous and heterozygous conditions. We used full-sib MA lines, where selection hampers the accumulation of severely deleterious mutations but is ineffective against mildly deleterious ones. A large control population was simultaneously evaluated. Competitive viability scores, unaffected by the expression of mutations in heterozygosis, were obtained relative to a Cy/L2 genotype. The rate of decline in mean ΔM ≈ 0.1% was small. However, that of increase in variance ΔV ≈ 0.08 × 10-3 was similar to the values obtained in previous experiments when severely deleterious mutations were excluded. The corresponding estimates of the mutation rate λ ≥ 0.01 and the average effect of mutations E(s) ≤ 0.08 are in good agreement with Bateman-Mukai and minimum distance estimates for noncompetitive viability obtained from the same MA lines after 105 generations. Thus, competitive and noncompetitive viability show similar mutational properties. The regression estimate of the degree of dominance for mild-to-moderate deleterious mutations was ∼0.3, suggesting that the pertinent value for new unselected mutations should be somewhat smaller.


2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.


Heredity ◽  
2019 ◽  
Vol 123 (6) ◽  
pp. 709-722 ◽  
Author(s):  
Sara Domínguez-García ◽  
Carlos García ◽  
Humberto Quesada ◽  
Armando Caballero

2015 ◽  
Vol 238 (2) ◽  
pp. S103
Author(s):  
A. Nadia ◽  
O. Chemessedine ◽  
B. Bilel ◽  
J. Dominique ◽  
D.B.K.-M. Samira Badji-Mokhtar

2018 ◽  
Author(s):  
Lars Bosshard ◽  
Stephan Peischl ◽  
Martin Ackermann ◽  
Laurent Excoffier

AbstractBacterial populations have been shown to accumulate deleterious mutations during spatial expansions that overall decrease their fitness and ability to grow. However, it is unclear if and how they can respond to selection in face of this mutation load. We examine here if artificial selection can counteract the negative effects of range expansions. We investigated the molecular evolution of 20 lines (SEL) selected for fast expansions and compared them to 20 lines without artificial selection (CONTROL). We find that all 20 SEL lines have been able to increase their expansion speed relative to the ancestral line, unlike CONTROL lines, showing that enough beneficial mutations are produced during spatial expansions to counteract the negative effect of expansion load. Importantly, SEL and CONTROL lines have similar numbers of mutations indicating that they evolved for the same number of generations and that increased fitness is not due to a purging of deleterious mutations. We find that loss of function (LOF) mutations are better at explaining the increased expansion speed of SEL lines than non-synonymous mutations or a combination of the two. Interestingly, most LOF mutations are found in simple sequence repeats located in genes involved in gene regulation and gene expression. We postulate that such potentially reversible mutations could play a major role in the rapid adaptation of bacteria to changing environmental conditions by shutting down expensive genes and adjusting gene expression.Author SummaryWe investigated if strong artificial selection for fast expansion can counteract the negative effects of range expansion which had been shown to lead to an accumulation of deleterious mutations. This experiments showed that i) an increase in expansion speed could occur if bacteria were selected from the largest protruding sectors, and ii) that artificially selected bacterial lines accumulated about the same number of mutations than simply expanding line suggesting that the observed increased fitness is not due to increased purifying selection where deleterious mutations would have been removed in fast growing lines. We find that loss of function (LOF) mutations are best explaining the observed increased expansion speed in selected lines. These mutations, which are known to play an important role in adaptive processes in bacterial populations, frequently consist in small insertion-deletions in simple sequence repeats, and are thus relatively easily reversible. They could thus act as switches that can reversibly shut down genes. Our results therefore suggest that shutting down expensive genes and adjusting gene expression are important for adaptive processes during range expansion.


2015 ◽  
Vol 89 (18) ◽  
pp. 9242-9251 ◽  
Author(s):  
Judith M. Fonville

ABSTRACTAdaptation is a common theme in both pathogen emergence, for example, in zoonotic cross-species transmission, and pathogen control, where adaptation might limit the effect of the immune response and antiviral treatment. When such evolution requires deleterious intermediate mutations, fitness ridges and valleys arise in the pathogen's fitness landscape. The effect of deleterious intermediate mutations on within-host pathogen adaptation is examined with deterministic calculations, appropriate for pathogens replicating in large populations with high error rates. The effect of deleterious intermediate mutations on pathogen adaptation is smaller than their name might suggest: when two mutations are required and each individual single mutation is fully deleterious, the pathogen can jump across the fitness valley by obtaining two mutations at once, leading to a proportion of adapted mutants that is 20-fold lower than that in the situation where the fitness of all mutants is neutral. The negative effects of deleterious intermediates are typically substantially smaller and outweighed by the fitness advantages of the adapted mutant. Moreover, requiring a specific mutation order has a substantially smaller effect on pathogen adaptation than the effect of all intermediates being deleterious. These results can be rationalized when the number of routes of mutation available to the pathogen is calculated, providing a simple approach to estimate the effect of deleterious mutations. The calculations discussed here are applicable when the effect of deleterious mutations on the within-host adaptation of pathogens is assessed, for example, in the context of zoonotic emergence, antigenic escape, and drug resistance.IMPORTANCEAdaptation is critical for pathogens after zoonotic transmission into a new host species or to achieve antigenic immune escape and drug resistance. Using a deterministic approach, the effects of deleterious intermediate mutations on pathogen adaptation were calculated while avoiding commonly made simplifications that do not apply to large pathogen populations replicating with high mutation rates. Perhaps unexpectedly, pathogen adaptation does not halt when the intermediate mutations are fully deleterious. The negative effects of deleterious mutations are substantially outweighed by the fitness gains of adaptation. To gain an understanding of the effect of deleterious mutations on pathogen adaptation, a simple approach that counts the number of routes available to the pathogen with and without deleterious intermediate mutations is introduced. This methodology enables a straightforward calculation of the proportion of the pathogen population that will cross a fitness valley or traverse a fitness ridge, without reverting to more complicated mathematical models.


2008 ◽  
Vol 4 (6) ◽  
pp. 758-761 ◽  
Author(s):  
Penelope R Haddrill ◽  
Fergal M Waldron ◽  
Brian Charlesworth

The recombinational environment influences patterns of molecular evolution through the effects of Hill–Robertson interference. Here, we examine genome-wide patterns of gene expression with respect to recombinational environment in Drosophila melanogaster . We find that regions of the genome lacking crossing over exhibit elevated levels of expression, and this is most pronounced for genes on the entirely non-crossing over fourth chromosome. We find no evidence for differences in the patterns of gene expression between regions of high, intermediate and low crossover frequencies. These results suggest that, in the absence of crossing over, selection to maintain control of expression may be compromised, perhaps due to the accumulation of deleterious mutations in regulatory regions. Alternatively, higher gene expression may be evolving to compensate for defective protein products or reduced translational efficiency.


Evolution ◽  
2011 ◽  
Vol 66 (2) ◽  
pp. 575-585 ◽  
Author(s):  
Katherine Tedman-Aucoin ◽  
Aneil F. Agrawal

Sign in / Sign up

Export Citation Format

Share Document