Faculty Opinions recommendation of A New Method for Integrating Ecological Niche Modeling with Phylogenetics to Estimate Ancestral Distributions.

Author(s):  
Ian Wang
2021 ◽  
Author(s):  
Wilson X Guillory ◽  
Jason L Brown

Abstract Ancestral range estimation and projection of niche models into the past have both become common in evolutionary studies where the ancient distributions of organisms are in question. However, these methods are hampered by complementary hurdles: discrete characterization of areas in ancestral range estimation can be overly coarse, especially at shallow timescales, and niche model projection neglects evolution. Phylogenetic niche modeling accounts for both of these issues by incorporating knowledge of evolutionary relationships into a characterization of environmental tolerances. We present a new method for phylogenetic niche modeling, implemented in R. Given past and present climate data, taxon occurrence data, and a time-calibrated phylogeny, our method constructs niche models for each extant taxon, uses ancestral character estimation to reconstruct ancestral niche models, and projects these models into paleoclimate data to provide a historical estimate of the geographic range of a lineage. Models either at nodes or along branches of the phylogeny can be estimated. We demonstrate our method on a small group of dendrobatid frogs and show that it can make inferences given species with restricted ranges and little occurrence data. We also use simulations to show that our method can reliably reconstruct the niche of a known ancestor in both geographic and environmental space. Our method brings together fields as disparate as ecological niche modeling, phylogenetics, and ancestral range estimation in a user-friendly package. [Ancestral range estimation; ancestral state reconstruction; biogeography; Dendrobatidae; ecological niche modeling; paleoclimate; phylogeography; species distribution modeling.]


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


2010 ◽  
Vol 118 (5) ◽  
pp. 653-658 ◽  
Author(s):  
Sunny Mak ◽  
Brian Klinkenberg ◽  
Karen Bartlett ◽  
Murray Fyfe

Sign in / Sign up

Export Citation Format

Share Document