scholarly journals Calculating possibility of the leaf area index of apple and pear trees

2012 ◽  
pp. 229-233
Author(s):  
Péter Riczu ◽  
János Tamás

A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and fast evaluate the leaf surface.

2010 ◽  
pp. 193-198
Author(s):  
János Tamás ◽  
József Zsembeli ◽  
Péter Riczu

A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factorof plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulatesthe absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is notan easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree(leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily andfast evaluate the leaf surface. Furthermore we defined from the water balance of compensation lysimeters the cumulative transpiration offruit trees and the efficiency of water use of trees.


2011 ◽  
pp. 129-132
Author(s):  
Péter Riczu ◽  
Nikolett Szőllősi ◽  
János Tamás ◽  
József Zsembeli

A significant proportion of the aboveground green and dry weight of the plant is constituted by foliage. The canopy is an important factor of plant growth. On the one hand, the canopy absorbs solar energy, which is necessary for photosynthesis; on the other hand, it accumulates the nutrients absorbed by the roots, and most of the water-loss occurs through the foliage. The determination of the full canopy is not an easy target. In our research, we developed a measurement method to determine the leaf area. With the parameters of the examined tree (leaf length and maximum width) and the data of the ADC AM 100 leaf area scanner, we determined the k-value, with which we can easily and fast evaluate the leaf surface. Furthermore, we defined from the water balance of compensation lysimeters the cumulative transpiration of fruit trees and the efficiency of water use of trees. From the examined trees were made a 3D depiction, which show the shape, branching and the location of trees.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 696-698 ◽  
Author(s):  
F.J. Montero ◽  
J.A. de Juan ◽  
A. Cuesta ◽  
A. Brasa

The importance of rapid, nondestructive, and accurate measurements of leaf area (LA) in agronomic and physiological studies is well known, but a search of the literature revealed little information available for grape (Vitis vinifera L.). The results described herein include a comparison of 12 different mathematical models for estimating leaf area in `Cencibel'. The simplest, most accurate regression equations were: LAi = 0.587 LW (R2 = 0.987) and LAi = 0.588 LW (R2 = 0.994), where LAi is leaf area measured using image analysis and LW is leaf length × maximum width. Use of maximum width (W), leaf length (L), petiole length (Lp), and dry weight of leaves (DML) as single variables in the regression equations were not as closely associated with total leaf area, although their R2 values were also highly significant.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 466b-466
Author(s):  
Norma R. Palispis

An experiment was conducted to compare the growth of amaryllis seedlings in the following media: pure horse manure, 1:1 garden soil–horse manure (v/v), and 1:1 garden soil–wood shavings (v/v). Final values for fresh weight increment, dry weight, leaf area, leaf area index, leaf length increment, bulb width increment, leaf area ratio, and crop growth rate were significantly highest and lowest in horse manure and 1:1 garden soil–wood shavings, respectively. Net assimilation rate, relative growth rate, and moisture content were similar for all treatments.


2021 ◽  
Vol 16 (1) ◽  
pp. 36-44
Author(s):  
Annapoorna Agadi ◽  
S Kolakar ◽  
D Lakshmana ◽  
S Nadukeri ◽  
M Hanumanthappa

An investigation was carried out to estimate the nature and extent of genetic variability​ ​among twenty Amaranthus genotypes (Amaranthus spp.) under a randomized block designduring the year 2019-20. The phenotypic coefficient of variation was higher than the genotypic​ ​coefficient of variation for all the traits. High genotypic coefficient of variation (GCV) and​ ​phenotypic coefficient variation (PCV) was observed for leaf area, leaf area index, leaf area​ ​duration, AGR, dry weight of leaf per plant, specific leaf weight, speed of germination,​ ​chlorophyll content and ascorbic acid (vitamin C). Moderate GCV and PCV were observed​ ​for leaf length, leaf width, petiole length, dry weight of stem per plant, leaf: stem ratio and​ ​foliage yield per plant. The high estimates of heritability coupled with higher values of genetic​ ​advance as per cent mean (GAM) were observed for the parameters like test weight, speed of​ ​germination, germination percentage, seedling dry matter, seedling vigour index-1, seedling​ ​vigour index-2, plant height, leaf length, leaf width, leaf area, leaf area index, leaf area​ ​duration, AGR, specific leaf weight, stem weight per plot, dry weight of leaf, dry weight of​ ​stem, leaf: stem ratio, foliage yield per plant, chlorophyll, ascorbic acid and beta- carotene​ ​content which indicates the predominance of additive gene action. Arka Arunima,​ ​Chikmagalur local, IC-551486, IC-551494 and IC-551466 recorded high foliage yield per​ ​plot and these can be utilized in further breeding programmes.


2019 ◽  
Vol 46 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Mahboobeh Mohebi Bijarpasi ◽  
Taymour Rostami Shahraji ◽  
Habiboalah Samizadeh Lahiji

AbstractThe purpose of the present study was to evaluate the genetic variability and heritability of some morphological and physiological traits in Fagus orientalis Lipsky along an elevation gradient in northern forests of Iran. Beech leaves were sampled from southern and northern crown parts of healthy mature trees along an elevation gradient comprising sites situated at 700 m, 1,200 m and 1,700 m above the sea level. Our statistical analysis showed that the investigated traits differed significantly between the populations. The results indicated the lowest and the highest coefficients of variation for the high (1,700 m) and middle elevation populations (1,200 m) for leaf length, petiole length, leaf area, specific leaf area, dry weight, specific dry weight, leaf index and petiole index traits. With increasing elevation, mean leaf width, distance from leaf base to the leaf maximum width, dry weight and petiole index increased. The plasticity of leaf length, specific leaf area, specific dry weight, petiole index and petiole length peaked at middle elevation, and with increasing elevation, the plasticity of these traits declined. The distance from leaf base to the leaf maximum width had the highest coefficient of genetic (75.5%) and phenotypic (75.5%) variation. The heritability results showed that there were differences in all traits, and that the highest heritability was recorded for the distance from the leaf base to the leaf maximum width (99.95 %). The results suggest that the studied beech populations responded to the environmental changes by changing their leaf traits in different ways at different altitudes.


1989 ◽  
Vol 112 (3) ◽  
pp. 425-426 ◽  
Author(s):  
D. M. Firman ◽  
E. J. Allen

Measurements of the area of individual leaves in crops are useful in the analysis of canopy architecture as they allow determination of the structure of leaf area index in a vertical profile. This information may be of use in modelling leaf growth and the assessment of photosynthetic potential of different strata of the canopy with ontogeny (cf. Firman & Allen, 1988).


2012 ◽  
Vol 10 (1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Z. U. Kamal ◽  
M. N. Yousuf

The investigation was carried out to evaluate the effect of different organic manures on turmeric with reference to vegetative growth, biomass production, rhizome yield and its attributes of turmeric (Curcuma longa L.). Turmeric showed better response to the application of organic manures. Plant with neem cake application had the taller plant (79.30 cm), maximum number of tillers per plant (5.40), leaf number (5.40), leaf area (44.09) leaf area index (0.429), fresh weight of halum ( 190.05g), fresh weight of root (49.13 g), fresh weight of rhizome per plant (256.21 g) and dry weight of halum (15.21g), dry weight of root (7.32 g), dry weight of rhizome per plant (40.35 g), total dry matter yield (6.85 t ha-1) than those received other types of manures. Moreover, yield attributes such as number of mother rhizomes per plant-1 (1.75), more number of primary rhizomes per plant-1 (5.19), secondary rhizomes per plant-1 (18.03) and tertiary rhizomes per plant (7.69) were also highly accelerated by neem cake application. Similarly, the same treatment expressed the best in terms of size of mother rhizome (7.69 cm), primary rhizome (21.86 cm) and secondary rhizomes (7.05 cm).All these parameters in cumulative contributed to  produce the highest estimated fresh rhizomes yield & cured rhizomes yield (29.48 t ha-1, 5.59 t ha-1 respectively). The highest curing percentage (20.28) was observed in T3 treatment having mustard cake@ 2.0 t/ha. Thus, organic manure like neem cake was best fitted natural fertilizer for turmeric cultivation.DOI: http://dx.doi.org/10.3329/agric.v10i1.11060The Agriculturists 2012; 10(1): 16-22


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


FLORESTA ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 1063
Author(s):  
João Everthon da Silva Ribeiro ◽  
Francisco Romário Andrade Figueiredo ◽  
Ester Dos Santos Coêlho ◽  
Walter Esfrain Pereira ◽  
Manoel Bandeira de Albuquerque

The determination of leaf area is of fundamental importance in studies involving ecological and ecophysiological aspects of forest species. The objective of this research was to adjust an equation to determine the leaf area of Ceiba glaziovii as a function of linear measurements of leaves. Six hundred healthy leaf limbs were collected in different matrices, with different shapes and sizes, in the Mata do Pau-Ferro State Park, Areia, Paraíba state, Northeast Brazil. The maximum length (L), maximum width (W), product between length and width (L.W), and leaf area of the leaf limbs were calculated. The regression models used to construct equations were: linear, linear without intercept, quadratic, cubic, power and exponential. The criteria for choosing the best equation were based on the coefficient of determination (R²), Akaike information criterion (AIC), root mean square error (RMSE), Willmott concordance index (d) and BIAS index. All the proposed equations satisfactorily estimate the leaf area of C. glaziovii, due to their high determination coefficients (R² ≥ 0.851). The linear model without intercept, using the product between length and width (L.W), presented the best criteria to estimate the leaf area of the species, using the equation 0.4549*LW.


Sign in / Sign up

Export Citation Format

Share Document