scholarly journals Manifestações patológicas causadas pela falha de impermeabilização em uma laje de concreto armado: Estudo de caso / Pathological manifestations caused by the failure of waterproofing a reinforced concrete slab: Case study

2021 ◽  
Vol 7 (12) ◽  
pp. 110915-110929
Author(s):  
Lázaro da Costa Rodrigues ◽  
Érika Cristina Nogueira Marques Pinheiro
Author(s):  
Dominic Joray ◽  
Martin Diggelmann

<p>The reinforced concrete slab of the reconstructed Station Square in Berne needed to be strengthened against punching shear. The case study led to the application of a newly developed post-installed punching shear reinforcement with inclined bonded bars.</p>


Author(s):  
Jukka Kähkönen ◽  
Pentti Varpasuo

Reinforced concrete wall subjected to an impact by a hard steel missile with a mass of 47 kg and an impact velocity of 135 m/s was one case study in the IRIS 2010 benchmark exercise in OECD/NEA/CSNI/IAGE framework. The wall had dimensions of 2m × 2m × 0.25m and it was simply supported. The perforation of the missile was expected. Fortum Power and Heat Ltd. participated in the benchmark. In this paper, we present our modeling and blind prediction of the benchmark case. The test results of the benchmark were released after the predictions were made. Based on the result comparison, we concluded that our model gave conservative results.


2019 ◽  
Vol 11 (13) ◽  
pp. 3571 ◽  
Author(s):  
Inkwan Paik ◽  
Seunguk Na

The construction industry not only consumes a lot of energy but also emits large volumes of carbon dioxide. Most countries have established target reduction values of the carbon dioxide emissions to alleviate environmental burdens and promote sustainable development. The reduction in carbon dioxide emissions in the construction industry has been taking place in various ways as buildings produce large quantities of the carbon dioxide over their construction life cycle. The aim of this study is to assess and compare the carbon dioxide emissions of an ordinary reinforced concrete slab and the voided slab system applied to a case study involving a commercial-residential complex building in South Korea. Process-based life-cycle assessment (LCA) is adopted to compute the carbon dioxide emissions during the construction phase, which includes all processes from material production to the end of construction. The results indicate that the total CO2 emissions are 257,230 and 218,800 kg CO2 for the ordinary reinforced concrete slab and the voided slab system, respectively. The highest contributor to CO2 reduction is the embodied carbon dioxide emissions of the building materials, which accounts for 34,966 kg CO2. The second highest contributor is the transportation of the building materials, accounting for 3417 kg CO2.


2014 ◽  
Vol 7 (6) ◽  
pp. 913-921 ◽  
Author(s):  
C. Britez ◽  
P. Helene ◽  
S. Bueno ◽  
J. Pacheco

It is common in coastal cities as Rio de Janeiro, that buildings located close to the shoreline have their basements below water table level. In most cases, the engineering solution for these buildings is to design a massive anti-flotation slab to satisfy, principally, the issues related to structural dimensioning and calculation hypothesis. On the other hand, the execution of this solution imply in significant construction problems related to reinforced concrete watertightness and durability. This paper presents a case study about challenges and solutions devised to execute an anti-flotation, 1m thick, 1200m³ reinforced concrete slab for the new Museu de Imagem e Som (MIS) - Sound and Image Museum, located at 50m from the seashore, at Copacabana in Rio de Janeiro, RJ. The results show that concrete proportions, concreting plan and pouring method adopted were decisive in obtaining a watertight structure, avoiding thus the employment of traditional waterproofing alternatives.


Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


1985 ◽  
Vol 50 ◽  
Author(s):  
A. Atkinson ◽  
D. J. Goult ◽  
J. A. Hearne

AbstractA preliminary assessment of the long-term durability of concrete in a repository sited in clay is presented. The assessment is based on recorded experience of concrete structures and both field and laboratory studies. It is also supported by results of the examination of a concrete sample which had been buried in clay for 43 years.The enoineering lifetime of a 1 m thick reinforced concrete slab, with one face in contact with clay, and the way in which pH in the repository as a whole is likely to vary with time have both been estimated from available data. The estimates indicate that engineering lifetimes of about 103 years are expected (providing that sulphate resisting cement is used) and that pH is likely to remain above 10.5 for about 106 years.


Sign in / Sign up

Export Citation Format

Share Document