scholarly journals Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jan Bitenc ◽  
Urban Košir ◽  
Alen Vizintin ◽  
Niklas Lindahl ◽  
Andraž Krajnc ◽  
...  

Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl2+ offers an energy density of more than 200 Wh/kg making it a viable solution for stationary electrical energy storage.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 506 ◽  
Author(s):  
Jan Bitenc ◽  
Tjaša Pavčnik ◽  
Urban Košir ◽  
Klemen Pirnat

Organic cathode materials are promising cathode materials for multivalent batteries. Among organic cathodes, anthraquinone (AQ) has already been applied to various metal‒organic systems. In this work, we compare electrochemical performance and redox potential of AQ with 1,4-naphthoquinone (NQ) and 1,4-benzoquinone (BQ), both of which offer significantly higher theoretical energy density than AQ and are tested in two different Mg electrolytes. In Mg(TFSI)2-2MgCl2 electrolyte, NQ and BQ exhibit 0.2 and 0.5 V higher potential than AQ, respectively. Furthermore, an upshift of potential for 200 mV in MgCl2-AlCl3 electrolyte versus Mg(TFSI)2-2MgCl2 was confirmed for all used organic compounds. While lower molecular weights of NQ and BQ increase their specific capacity, they also affect the solubility in used electrolytes. Increased solubility lowers long-term capacity retention, confirming the need for the synthesis of NQ and BQ based polymers. Finally, we examine the electrochemical mechanism through ex situ attenuated total reflectance infrared spectroscopy (ATR-IR) and comparison of ex situ cathode spectra with spectra of individual electrode components. For the first time, magnesium anthracene-9,10-bis(olate), a discharged form of AQ moiety, is synthesized, which allows us to confirm the electrochemical mechanism of AQ cathode in Mg battery system.


2020 ◽  
Vol 10 (32) ◽  
pp. 2001635 ◽  
Author(s):  
Sechan Lee ◽  
Kyunam Lee ◽  
Kyojin Ku ◽  
Jihyun Hong ◽  
Soo Young Park ◽  
...  

Author(s):  
Zhimin Li ◽  
Yi-Qiang Xu ◽  
Chao Wang ◽  
Guorong Lei ◽  
Rui Zhang ◽  
...  

Constructing high performance hypergolic propellant is of vital importance yet challenging. Herein, by taking metal organic framework(MOF) as a propotypical system, we proposed that co-assembled functional cyanotetrazolylborohydride (CTB) and imidazole...


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5742
Author(s):  
Vignaswaran Veerapandiyan ◽  
Federica Benes ◽  
Theresa Gindel ◽  
Marco Deluca

Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. In this study, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed, including (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites, and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing routes to match various applications’ needs. Finally, future trends in computationally-aided materials design are presented.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48220-48227 ◽  
Author(s):  
Subrata Sarkar ◽  
Samiran Garain ◽  
Dipankar Mandal ◽  
K. K. Chattopadhyay

A significant improvement of dielectric properties and toughness with electrical energy density up to 11 J cm−3 is observed in flexible PVDF–BiVO4 nanocomposite film. It underlines to use as flexible high energy density capacitors and piezoelectric based energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document