scholarly journals Guidance Navigation and Control for Chang’E-5 Powered Descent

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Honghua Zhang ◽  
Ji Li ◽  
Zeguo Wang ◽  
Yifeng Guan

To achieve the goal of collecting lunar samples and return to the Earth for the Chang’E-5 spacecraft, the lander and ascender module (LAM) of the Chang’E-5 spacecraft successfully landed on the lunar surface on 1 Dec., 2020. The guidance, navigation, and control (GNC) system is one of the critical systems to perform this task. The GNC system of previous missions, Chang’E-3 and Chang’E-4, provides the baseline design for the Chang’E-5 LAM, and the new characteristics of the LAM, like larger mass and liquid sloshing, also bring new challenges for the GNC design. The GNC design for the descent and landing is presented in this paper. The guidance methods implemented in the powered descent are presented in detail for each phase. Propellant consumption and hazard avoidance should be particularly considered in the design. A reconfigurable attitude control is adopted which consists of the quaternion partition control, phase and gain stabilization filter, and dual observer. This controller could provide fast attitude maneuver and better system robustness. For the navigation, an intelligent heterogeneous sensor data fusion method is presented, and it is applied for the inertial measurement unit and velocimeter data. Finally, the flight results of the LAM are shown. Navigation sensors were able to provide valid measurement data during descent, and the thrusters and the main engine operated well as expected. Therefore, a successful soft lunar landing was achieved by the LAM.

Author(s):  
J. Prado ◽  
G. Bisiacchi ◽  
L. Reyes ◽  
E. Vicente ◽  
F. Contreras ◽  
...  

A frictionless environment simulation platform, utilized for accomplishing three-axis attitude control tests in small satellites, is introduced. It is employed to develop, improve, and carry out objective tests of sensors, actuators, and algorithms in the experimental framework. Different sensors (i.e. sun, earth, magnetometer, and an inertial measurement unit) are utilized to assess three-axis deviations. A set of three inertial wheels is used as primary actuators for attitude control, together with three mutually perpendicular magnetic coils intended for desaturation purposes, and as a backup control system. Accurate balancing, through the platform’s center of mass relocation into the geometrical center of the spherical air-bearing, significatively reduces gravitational torques, generating a virtually torque-free environment. A very practical balancing procedure was developed for equilibrating the table in the local horizontal plane, with a reduced final residual torque. A wireless monitoring system was developed for on-line and post-processing analysis; attitude data are displayed and stored, allowing properly evaluate the sensors, actuators, and algorithms. A specifically designed onboard computer and a set of microcontrollers are used to carry out attitude determination and control tasks in a distributed control scheme. The main components and subsystems of the simulation platform are described in detail.


2016 ◽  
Vol 33 (1) ◽  
pp. 125-136 ◽  
Author(s):  
M.-L. Deng ◽  
B.-Z. Yue

AbstractThis paper focuses on the attitude dynamics and control of liquid filled spacecraft, and the large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process, specifically for the occurrence of large amplitude slosh. This model is improved by incorporating a static capillary force and an effective mass factor. The improvements on this model are validated with previously published experiment results. The spacecraft attitude maneuver is implemented by the momentum transfer technique, and the feedback control strategy is designed based on Lyapunov theory. The effects of liquid viscosity, tank location and desired steady time on sloshing torque and control torque are investigated. The attitude control strategy applied in this paper is proved to be applicable for the coupled liquid filled spacecraft system. The obtained conclusions are useful to aid in liquid filled spacecraft overall design.


2013 ◽  
Vol 20 (1) ◽  
pp. 97-126 ◽  
Author(s):  
Roberto Sabatini ◽  
Leopoldo Rodríguez ◽  
Anish Kaharkar ◽  
Celia Bartel ◽  
Tesheen Shaid ◽  
...  

ABSTRACT This paper presents the second part of the research activity performed by Cranfield University to assess the potential of low-cost navigation sensors for Unmanned Aerial Vehicles (UAVs). This part focuses on carrier-phase Global Navigation Satellite Systems (GNSS) for attitude determination and control of small to medium size UAVs. Recursive optimal estimation algorithms were developed for combining multiple attitude measurements obtained from different observation points (i.e., antenna locations), and their efficiencies were tested in various dynamic conditions. The proposed algorithms converged rapidly and produced the required output even during high dynamics manoeuvres. Results of theoretical performance analysis and simulation activities are presented in this paper, with emphasis on the advantages of the GNSS interferometric approach in UAV applications (i.e., low cost, high data-rate, low volume/weight, low signal processing requirements, etc.). The simulation activities focussed on the AEROSONDE UAV platform and considered the possible augmentation provided by interferometric GNSS techniques to a low-cost and low-weight/volume integrated navigation system (presented in the first part of this series) which employed a Vision-Based Navigation (VBN) system, a Micro-Electro-Mechanical Sensor (MEMS) based Inertial Measurement Unit (IMU) and code-range GNSS (i.e., GPS and GALILEO) for position and velocity computations. The integrated VBN-IMU-GNSS (VIG) system was augmented using the inteferometric GNSS Attitude Determination (GAD) sensor data and a comparison of the performance achieved with the VIG and VIG/GAD integrated Navigation and Guidance Systems (NGS) is presented in this paper. Finally, the data provided by these NGS are used to optimise the design of a hybrid controller employing Fuzzy Logic and Proportional-Integral-Derivative (PID) techniques for the AEROSONDE UAV.


2012 ◽  
Vol 241-244 ◽  
pp. 1261-1264 ◽  
Author(s):  
Xuan Cui ◽  
Zhong Yan Fan ◽  
Hua Sun

Attitude control is the core of the four-axis aircraft flight control,By analyzing the principle of four-axis aircraft flight,this paper, on the basis of the traditional method ,acceleration sensors to obtain data, we use the Kalman filter method, fuse acceleration sensor data and gyroscope data, MCU as the core of the inertial measurement unit test,The results showed that,The aircraft can be better stabilized at the test platform, can achieve the requirements of attitude control of the four-axis aircraft.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

The paper describes the development of a microsatellite attitude determination and control subsystem (ADCS) and verification of its functionality by software-in-the-loop (SIL) method. The role of ADCS is to provide attitude control functions, including the de-tumbling and stabilizing the satellite angular velocity, and as well as estimating the orbit and attitude information during the satellite operation. In Taiwan, Air Force Institute of Technology (AFIT), dedicating for students to design experimental low earth orbit micro-satellite, called AFITsat. For AFITsat, the operation of the ADCS consists of three modes which are initialization mode, detumbling mode, and normal mode, respectively. During the initialization mode, ADCS collects the early orbit measurement data from various sensors so that the data can be downlinked to the ground station for further analysis. As particularly emphasized in this paper, during the detumbling mode, ADCS implements the thrusters in plus-wide modulation control method to decrease the satellite angular velocity. ADCS provides the attitude determination function for the estimation of the satellite state, during normal mode. The three modes of microsatellite adopted Kalman filter algorithm estimate microsatellite attitude. This paper will discuss using the SIL validation ADCS function and verify its feasibility.


Author(s):  
P. Vernis ◽  
V. Oliviero

This paper deals with an application of Genetic Algorithm (GA) tools in order to perform and optimize the settings phase of the Guidance, Navigation, and Control (GNC) data set for the endgame phase of a Kinetic Impactor (KI) targeting a medium-size Near Earth Object (NEO). A coupled optimization of the GNC settings and of the GC-oriented design of the Divert and Attitude Control System (DACS) is also proposed. The illustration of the developed principles is made considering the NEOShield study frame.


Author(s):  
Changxuan Wen ◽  
Pini Gurfil

R-bar refers to the local vertical axis pointing radially upward in a satellite-fixed reference frame. Approaching a satellite along the R-bar, especially for rendezvous and docking to geostationary satellites, is advantageous in terms of safety considerations and flight time compared to other options. In this paper, a specialized study on autonomous R-bar proximity operations with respect to a geostationary target from a separation of several kilometers to a few hundreds of meters, commonly referred to as the closing phase, is carried out and a comprehensive solution for both attitude and orbit control in this scenario is proposed. An integrative design of the guidance, navigation, and control for R-bar proximity operations is presented. Impulsive R-bar hopping maneuvers are developed for the trajectory guidance. This method is shown to be passively safe and time efficient. The onboard sensors provide measurements of the line-of-sight, range to the target, attitude and angular velocity in the inertial frame. Due to the sensitivity of the sensor’s pointing in the far-range phase, a sliding mode attitude control law is introduced to align the optical axis with the line-of-sight to the target. Sensor measurements are fused and processed by an extended Kalman filter. Simulation results indicate that the proposed integrative guidance, navigation, and control algorithms are robust to uncertainties and noise, and can be used as a comprehensive solution for R-bar rendezvous and docking mission design during the closing phase.


2014 ◽  
Vol 44 (4) ◽  
pp. 377-384 ◽  
Author(s):  
Ping YU ◽  
Yu ZHAO ◽  
Ji LI ◽  
XiaoWen ZHANG ◽  
DaYi WANG ◽  
...  

Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Jinchang Hu ◽  
Xiangyu Huang ◽  
Maodeng Li ◽  
Minwen Guo ◽  
Chao Xu ◽  
...  

AbstractThe entry vehicle for the Tianwen-1 mission successfully landed on the surface of Mars at 7:18 AM BJT on May 15, 2021. This successful landing made China the first country to orbit, land, and release a rover in their first attempt at the Mars exploration. The guidance, navigation, and control (GNC) system plays a crucial role in the entry, descent, and landing (EDL) phases. This study focused on the attitude control component of the GNC system design. The EDL phase can be divided into several sub-phases, namely the angle of attack control phase, lift control phase, parachute descent phase, and powered descent phase. Each sub-phase has unique attitude control requirements and challenges. This paper introduces the key aspects of designing attitude controllers for each phase. Furthermore, flight results are presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document