Short- and long-term outcomes of primary Achilles tendon repair in cats: 21 Cases

2010 ◽  
Vol 23 (5) ◽  
pp. 348-353 ◽  
Author(s):  
M. Cervi ◽  
N. Brebner ◽  
J. Liptak
2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0022
Author(s):  
Akın Turgut ◽  
Mert Zeynel Asfuroğlu

Objectives: The ruptures of the Achilles tendon (AT) are relatively common. Since there is no consensus on the best method of the repair of the AT; the treatment is determined on the preference of the surgeon and the patient. The study evaluating the cadaveric and short term clinical results done by our clinic in 2002, has shown us that arthroscopically Achilles tendon repair can be good choise in achilles tendon ruptures. Methods: Fortyfour patients who underwent arthroscopically assisted achilles tendon repair during 1997-2011 in Osmangazi University Orthopaedics and Traumatology Department were retrospectively observed. The mean follow-up time was 69,7 months. One of patients had bilateral rupture. The diagnosis was based on loss of plantar flexion strength, palpation of the gap in the tendon, and a positive Thompson test. MRI and USG were used when needed. The ruptures were left-sided in nineteen patients and right-sided in twentysix. The cause of the rupture was recreational sports activity in thirtyeight, fall from height in four, missing a step in a staircase in two. Return the regular activity, ankle range of motion as compared with the opposite side, calf circumference, and ability to walk and stand tiptoe were recorded. All patients were operated on within 2-32 days after the rupture. Thirtysix operations were performed under spinal anesthesia and eight operations were performed under general anesthesia. Tourniquet was always used. Before starting the procedure, the rupture site and location of the gap are marked. Using the common videoarthroscopic instruments, a 70 degrees scope was inserted into the AT through the stab incision made previously, and the torn ends of the tendon were visualized with plantar flexion an extension of the ankle. After the visualization of the torn ends of the tendon and repair by the technique of Ma and Griffith care was focused to contact the ends of the tendon anatomically; then the sutures were knotted. A short leg circular cast with the ankle in slight plantar flexion was applied. American Orthopaedics Foot-Ankle Society (AOFAS) score was used to evaluate the long-term results.. Results: All patients had satisfactory results that no reruptures had occurred. No significant difference in range of motion of the ankle and calf circumference between the opposite sides was observed in any patient. All patients could walk and stand on tiptoe. AOFAS mean score was 94.5 (65-100). The interval from injury to return to regular work and activities was 8-10 weeks. All the patients were able to return back to their activity level before surgery. In three patients temporary sural hypoestesia, in one patient permanent sural hipoestesia and in one patient wound enfection appeared. No sensory deficit was detected in the temporary sural hypoestesia patients after postoperative second year controls. Medical care was supported to the patient with the wound enfection and the enfection was under control in the early stages. Conclusion: In summary; arthroscopically-assisted percutaneous repair of AT appears to overcome some certain problems of open, conservative and percutaneous techniques; but the neurovascular structure damage risk especially the sural nerve remains a potent problem. Accurate knowledge of the anatomy appears to be a solution. Novel percutaneous repairs have been promising to minimize the risk of sural nerve damage.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
William Ormiston ◽  
Shelagh Dyer-Hartnett ◽  
Rukshan Fernando ◽  
Andrew Holden

Abstract Background Plain balloon angioplasty has traditionally been used to treat lower limb arterial disease but can be limited by significant residual stenosis, vessel recoil, dissection, and by late restenosis. Appropriate vessel preparation may significantly improve short and long-term outcomes. We aim to give an overview of some of the devices currently available, or under investigation, for vessel preparation in the lower limb. Main text Vessel preparation devices include those that remove plaque (atherectomy devices) and those that modify plaque. The four groups of plaque removing atherectomy devices are defined by their plaque removal method: Directional, rotational orbital and excimer laser are categories of devices investigated for plaque modification. Intravascular lithotripsy devices generate sonic pulsatile pressure waves that pass into the vessel wall cracking calcified plaques whilst sparing soft tissue. This enables dilatation of calcified lesions at low pressure by conventional balloons and enables full stent expansion. Other balloon based vessel preparation devices were designed to modify plaque and produce more controlled, lower pressure luminal expansion without major dissections and potentially with less recoil than conventional angioplasty balloons. Scoring balloons have a helical nitinol element attached to the balloon that scores plaque facilitating uniform luminal enlargement. Further specialty balloons have been developed in recent years, including the Chocolate, Phoenix and Serranator balloons. Finally, the temporary Spur self-expanding retrievable nitinol stent has a series of radially aligned spurs that are driven into the vessel wall by post-dilatation, potentially improving drug delivery. Conclusion Lesion specific vessel preparation aims to improve both short and long term outcomes through improved penetration of anti-proliferative drug, maximising luminal gain, reducing the need for stent placement and minimising intimal injury. Some forms of vessel preparation appear to improve short term outcomes; long-term outcomes remain uncertain. An overview of some of the multiple devices available for vessel preparation is presented.


Sign in / Sign up

Export Citation Format

Share Document