scholarly journals Immobilization of Pb by organic and inorganic phosphate and calcium sources in an acidic Pb-polluted soil amended with cow manure

2021 ◽  
Vol 8 (3) ◽  
pp. 227-235
Author(s):  
Amir Hossein Baghaie ◽  
Mehran Keshavarzi

Background: Chemical stabilization of heavy metals in acidic soil is one of the important points in environmental pollution. Thus, this research was conducted to investigate the effect of organic and inorganic amendments on lead (Pb) immobilization in the Pb-polluted soil. Methods: Treatments were consisted of applying cow manure (0, 15, and 30 t/ha), and applying cow bone and phosphate rock (5% (W/W)) in the Pb (0, 800, and 1600 mg Pb/kg soil)-polluted soil. The plant used in this experiment was canola. After 70 days, the plants were harvested and soil and plant Pb concentration was measured using atomic absorption spectroscopy (AAS). Results: Applying 15 and 30 t/ha of cow manure in the Pb (1600 mg Pb/kg soil)-polluted soil significantly decreased the soil Pb concentration by 14.3 and 17.2%, respectively. For plant Pb concentration, it was increased by 11.8 and 15.1%, respectively. A significant decrease in plant Pb concentration was measured, when the soil under cultivation of the plant was amended with 5% (W/W) phosphate rock powder. For the plants grown on the soil, which was amended with 5% (W/W), the plant Pb concentration decreased by 17.6%. In addition, applying organic and inorganic amendment significantly decreased the bio-concentration factor (BCF), while the soil microbial respiration increased. Conclusion: The results of this study showed that applying 15 and 30 t/ha cow manure or calcium and phosphorus sources such as cow bone and phosphate rock powder (5% (W/W) can decrease the soil Pb availability and prevent the Pb translocation from soil to plants.

Author(s):  
Amir Hossein Baghaie

Background and Purpose: Phytoremediation efficiency of heavy metals is one of the important points in environmental studies. This research was conducted to investigate the effect of cow manure, elemental sulfur and EDTA on Cd uptake by Indian mustard in a Cd-polluted soil in the presence of Thiobacillus thiooxidans. Materials and Methods: Treatments consisted of applying cow manure (0, 5 and 10 g/kg soil), soil application of elemental sulfur (2 g/kg soil), and Cd-polluted soil (0 and 20 mg Cd/kg soil) with 1.5 mmol EDTA/kg soil in the presence of Thiobacillus spp. After 90 days, Indian mustard plant was harvested and plant Zn, Fe and Cd concentration was measured using atomic absorption spectroscopy. In addition, the soil microbial respiration was measured. Results: The use of 2 g/kg soil of elemental sulfur significantly increased the plant Cd concentration in the presence and absence of Thiobacillus by 14.2 and 11.7%, respectively. Adding cow manure to the soil at the rates of 5 and 10 g/kg soil significantly increased the plant Cd concentration by 15.7 and 18.1%, respectively. Also, the application of EDTA chelate at the rate 0f 1.5 mmol/kg soil significantly increased the Cd concentration of the plants grown in the Cd-polluted soil (20 mg Cd/kg soil) by 13.6%. Conclusion: The results of the present study showed that using elemental sulfur in the Cdpolluted soil can increase the Cd concentration of the plant which was cultivated in the soil amended with cow manure in the presence of Thiobacillus bacteria. However, the role of soil physic-chemical properties on phytoremediation efficiency cannot be ignored.  


2019 ◽  
Vol 131 ◽  
pp. 01109
Author(s):  
Xian Luo ◽  
Zheng Zhao ◽  
Fafu Deng ◽  
Lin Zhu ◽  
Haiyan Zhang ◽  
...  

Soil culture experiments were carried out to study the effects of the mixture of cadmium (Cd) hyperaccumulator straw (Solanum nigrum L., Amaranthus chinense L., and Siegesbeckia orientalis L.) and phosphate rock on soil pH, available Cd content and soil nutrients in Cd polluted soil. The results showed that: (1) The soil pH was increased to a certain extent by three kinds of compound materials. (2) The contents of available potassium (AK) and available phosphorus (AP) in soil were increased to a certain extent by the three compounding materials, but there was no significant effect on total nitrogen (TN). And 2% phosphate rock powder and 1% Amaranthus chinense L. had the greatest increase in AP, reaching 49.28%, and 2% phosphate rock powder and 1% Siegesbeckia orientalis L. had the greatest increase in AK, reaching 136.23%. (3) The available Cd content in soil was reduced by three kinds of compound materials. The decrease of available Cd was the greatest in 2% phosphate rock powder and 1% Solanum nigrum L. straw mixed, which was 12.71%. In summary, the combination of Cd hyperaccumulator straw and phosphate rock powder can effectively passivate Cd in soil and improve soil nutrient content, and 2% phosphate rock powder and 1% Solanum nigrum L. straw are the best.


2019 ◽  
Vol 131 ◽  
pp. 01110
Author(s):  
Xian Luo ◽  
Zheng Zhao ◽  
Fafu Deng ◽  
Lin Zhu ◽  
Haiyan Zhang ◽  
...  

Soil culture experiments were carried out to study the effects of the mixture of Amaranthus chinense L. straw and phosphate rock on soil pH, available phosphorus (AP), available potassium (AK) and DTPA-Cd content in Cd polluted soil. The results showed that: (1) 2% phosphate rock powder combined with 1%, 2%, 3% of Amaranthus chinense L. straw can significantly increase soil pH, AP and AK content. Compared with CK, pH was increased by 0.42~0.56, 0.53~0.70 and 0.47~0.73 units, respectively, and AP was increased by 19.03%~32.62%, 14.91%~43.63% and 18.88%~58.01%, respectively, and AK was increased by 201.46%~234.66%, 210.5%~266.56% and 184.07%~224.98%, respectively. (2) The DTPA-Cd content in soil decreased significantly after adding three different ratios of compound materials, which were 1.75%~9.01%, 2.86%~10.02% and 0.98%~8.7% lower than CK, respectively. In summary, the mixture of 1% Amaranthus chinense L. straw and 2% phosphate rock powder had the best passivation effect on Cd.


Author(s):  
Amir Hossein Baghaie

Background and Purpose: Phytoremediation efficiency of heavy metals is an important factor in environmental studies. This study was conducted to investigate the effect of multi-walled carbon nanotubes (MWCNTs), zeolite, and P.indica on bio-degradation of mazut in a soil treated with Cd and mazut. Materials and Methods: Treatments consisted of applying zeolite (0, 1 and 2% (W/W)), MWCNTs (0, 1 and 2 % (W/W)) in the presence and absence of P.Indica in the Cd (0 , 5 and 10 mg/kg soil) polluted soil that was simultaneously polluted with mazut (0 and 6 % (W/W)). After 70 days, plants were harvested, and plant and soil Cd were measured using AAS. In addition, the degradation percentage of mazut in soil was determined. Results: Addition of 2 % (W/W) MWCNTs and zeolite to the soil polluted with 6 % (W/W) mazut significantly increased the bio-degradation percentage of mazut in the soil by 11.3%. For soil and plant Cd concentration, it was decreased by 10.6 and 12.8%, respectively. In addition, plant inoculation with P.indica significantly increased the bio-degradation of mazut in the Cd polluted soil (10 mg Cd/kg soil) by 14.3%. Increasing soil pollution to mazut from 0 to 6 % (W/W) significantly increased the soil microbial respiration by 14.4%. Conclusion: Based on the results, addition of MWCNs and zeolite in the soil and plant inoculation with P.indica significantly increased the mazut bio-degradation in the soil. However, the amount and type of pollutant had a significant effect on phytoremediation efficiency. 


2017 ◽  
Vol 114 (24) ◽  
pp. 6322-6327 ◽  
Author(s):  
Christine V. Hawkes ◽  
Bonnie G. Waring ◽  
Jennifer D. Rocca ◽  
Stephanie N. Kivlin

Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.


2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2018 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Amir Hossein Baghaie ◽  
Forough Aghili ◽  
Ali Hassani Joshaghani

2020 ◽  
Vol 22 (1) ◽  
pp. 153-163
Author(s):  
C.N. Eze ◽  
P.I. Orjiakor ◽  
U.J. Ebeifenadi

This study was undertaken to investigate the effects of Bonny light crude oil contamination of sandy loam soil on aspects of microbial metabolism and physicochemical properties of the soil. Bonny light crude oil (specific gravity = 0.81) was used at eight different levels (0.5%, 1.0%, 2.0%, 2.5%, 5.0%, 10.0%, 15.0% or 20.0% v/w of soil) for the controlled pollution of pristine soil samples, each weighing 1 kg. The experiment lasted for eightweeks. Results of the effects of crude oil on the physicochemical properties of the soil showed that high levels of the oil significantly (p< 0.05) increased soil organic matter but had no significant effect on the pH and moisture content. With the exception of organic carbon, the levels of bioavailable nitrogen, sodium, potassium, calcium, magnesium, sulphur and phosphorus in the test samples with higher levels of crude oil (5.0%, 10.0%, 15.0% and 20.0%) were significantly reduced when compared to their levels in the controls. Similarly, higher levels of the oil significantly (p<0.05) reduced soil microbial phospholipid synthesis and CO emission. 2 Correlation analysis using the Pearson's correlation model showed a positive correlation between soil CO and 2 phospholipid (r = 0.74). Keywords: Contamination, Crude oil, Microbial respiration, Physicochemical properties.


Sign in / Sign up

Export Citation Format

Share Document