scholarly journals Features of operation of photovoltaic plants as a supplementary source of electricity for non-traction consumers of railway electric mains

2019 ◽  
pp. 61-66
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. To determine the features of operation of photovoltaic stations as а supplementary source of electricity for non-traction consumers of railway power grids. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The authors analyze the current prerequisites for the use of electricity obtained from non-traditional sources (photovoltaic stations) to supply non-traction consumers of railway power grids. The nature of the intensity of solar radiation was clarified due to meteorological observations for 2018, recorded using a SMIR pyranometer from KIRP & ZONEN, which is specially designed to record the flow of solar energy falling on a flat surface from the sun and sky in the wavelength range from 300 to 3000 nanometers (Nm), which has an intelligent interface, in the city of Vasylivka, Zaporizhia region with an interval of minutes. The total number of values was about 25,000. The data obtained are as follows: the lowest intensity of solar radiation during 2018 was 400 W / m2, and the highest - 1000 W / m2. The calculation of the choice of photovoltaic panels type PV-MLV 250 NS with a maximum power of 250 W for the completion of a specific photovoltaic station for installation in the specified region. The authors conclude that in order to provide reliable energy supply to non-traction consumers of railway power grids during the day from autonomous solar power plants, the latter must be provided with electricity (storage batteries) in quantities exceeding the required load by about 1.7 times. The originality is that the use of renewable energy sources in the power supply systems of non-traction consumers of railway transport, in particular photovoltaic installations, is proposed. Practical implications. Introduction of photovoltaic stations as a supplementary source of electricity for non-traction consumers of railway power grids in order to minimize electricity costs. Keywords: renewable energy sources, quality of electric energy, photovoltaic plant, power supply networks of railway transport, non-traction consumers of railway electric networks, electricity production, solar radiation intensity, storage batteries.

2019 ◽  
pp. 36-41
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. Identify the features of operation of wind farms as an auxiliary supplier of electricity for non-traction consumers of railway networks and analyze the main factors that directly affect the use of wind farms due to the random nature of wind flow and additional factors due to the above conditions in different climates. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The need to use renewable energy sources in the power supply systems of non-traction consumers of railway transport is obvious. Given the constant growth of prices and tariffs for electricity in Ukraine, more and more attention is paid to its savings and the search for the cheapest and most affordable alternative sources. The authors consider issues related to the possibility of using additional generation of electricity in the power supply systems of railway transport through the use of wind turbines, including for non-traction consumers. The analysis of wind flow features in some regions of Ukraine was carried out, and the measurement of wind speed in Zaporizhia and Dnipropetrovsk regions was obtained with the help of a compact wind speed sensor manufactured by Micro-Step-MIS LLC (Russia). The obtained values of wind speed were recorded and stored digitally. The received information of the above device was processed. The authors conclude that in the case of using wind turbines as an additional power source in the networks of non-traction consumers of railway power supply systems it is economically advantageous to connect them directly to these networks and fully use all electricity produced by them, reducing its consumption from this power supply system. The originality is that the use of renewable energy sources in the power supply systems of non-traction consumers of railway transport, in particular wind turbines, is proposed. Practical implications. Introduction of wind power plants as an auxiliary supplier of electricity for non-traction consumers of railway power grids in order to minimize electricity costs. Keywords: renewable energy sources, quality of electric energy, wind power plant, power supply networks of railway transport, non-traction consumers of railway electric networks, electricity production, wind speed.


2019 ◽  
pp. 54-60
Author(s):  
Kachan Yuriy ◽  
Kuznetsov Vitaliy

Purpose. Describe the tools used by the authors for experimental research on the possibilities of using renewable energy sources in the power supply systems of non-traction consumers of railway transport. The methodology of research is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. To date, there is no comprehensive approach and specific reasonable measures for the introduction of re-newable energy sources in the energy supply of non-traction consumers. The article presents examples of the introduction of renewable energy sources in the power supply systems of railways abroad. It is noted that when using different renewable energy sources in the power supply systems of non-traction consumers, it is necessary to have a volume of statistical information to determine their technical and economic indicators. The classification of wind power plants with a horizontal axis is given. The schematic diagram and general view of the developed experimental wind power plant are given. The schematic diagram and general view of the developed experimental photovoltaic plant are given. The equipment used for research of wind flow and intensity of solar radiation in places of possible location of wind power or photovoltaic installations is considered. The presented experimental wind power and photovoltaic plants, which serve for a comprehensive study of the possibilities of using wind and solar sources in the power supply systems of non-traction consumers, are generalized and allow to clarify the necessary data for decision making. The originality is the introduction of renewable energy sources in the power supply system of non-traction consumers of railway transport. Practical implications. The use of additional renewable energy sources to supply non-traction consumers minimizes electricity consumption. Keywords: renewable energy sources, quality of electric energy, wind power plant, photovoltaic plant, power supply networks of railway transport, traction and non-traction consumers, electricity production


2021 ◽  
Vol 2061 (1) ◽  
pp. 012016
Author(s):  
D Karamov ◽  
I Volkova ◽  
Suslov ◽  
I Dolmatov

Abstract The use of renewable energy sources (RES) and storage batteries (SB) in decentralized power systems is a cost-effective way to supply power to consumers. In this case, storage batteries are one of the most important system components. The significance of storage batteries is conditioned by a stabilizing effect obtained at generation from RES that are defined by stochastic oscillating functions. However, it is worth noting that storage batteries also improve the cost-effectiveness of such systems by reducing consumption of diesel fuel. This is particularly noticeable at night when load is the least and the use of diesel generators is inefficient. One of the most important points is the determination of potential internal processes of aging and breakdowns that occur in storage batteries during operation. The use of a tested model for categorization of storage batteries according to the operating conditions makes it possible to take account of these factors at the stage of a system design. The paper presents a detailed analysis of decentralized power supply system Verkhnyaya Amga. The focus is made on the cost-effectiveness of a combined use of RES with storage batteries, annual saving of diesel fuel, operating parameters. The research reveals hidden problems that represent various uncertainties that affect greatly the economic and operation parameters of the system.


2019 ◽  
pp. 68-74
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. To analyze the technical and economic indicators of the use of wind and photovoltaic stations in the power supply systems of non-traction consumers of railway power grids. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The authors analyze the current prerequisites for the use of electricity generated from renewable sources (wind and photovoltaic stations) to supply non-traction consumers of railway power grids. The authors note that for reliable power supply to non-traction consumers in the presence of accidental wind flow or intensity of solar radiation, the capacity of wind and photovoltaic plants will need to be significantly overestimated, which leads to a significant increase in capital costs for construction. The paper presents examples of implementation of options for the construction of the above wind and photovoltaic stations for the variable nature of wind speed and intensity of solar radiation for specific regions of Ukraine (Vasylivka, Zaporizhia region). The authors present variants of the basic schemes of wind, solar and combined electric power supply systems for non-traction consumers. Information on technical and economic indicators of the most common domestic photo modules and wind turbines on the Ukrainian market is provided. The originality of the work is reflected in the examples of the introduction of options for the construction of wind and photovoltaic stations for the variable nature of wind speed and intensity of solar radiation for specific regions of Ukraine. Practical implications. The above calculation of the cost of the required number of power sources at wind, solar and combined power plants helps to choose the least expensive option for the introduction of renewable energy sources for non-traction consumers of railway networks. Keywords: renewable energy sources, photovoltaic installation, railway power supply networks, non-traction consumers of railway power grids, electricity production, solar radiation intensity, wind flow rate, capital expenditures.


2018 ◽  
pp. 8-13
Author(s):  
Boris M. ANTONOV ◽  
◽  
Nikolai N. BARANOV ◽  
Konstantin V. KRYUKOV ◽  
Yuri K. ROZANOV ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


Sign in / Sign up

Export Citation Format

Share Document