Bedrock structure, lithology and ground water: influences on slope failure initiation in Davis County, Utah

1995 ◽  
2018 ◽  
Author(s):  
Julien Seguinot

Large alpine landslides dynamics are generally associated with Quaternary glacier retreat. Some recent datations demonstrate that several thousand years can separate the slope failure initiation from ice pressure unloading. The current study addresses the question whether the persistence of deep permafrost could produce this time lag. A model of deep permafrost evolution is developed, including heat diffusion, phase change and a ground surface transfer function. It is numerically implemented by a 1D finite difference code on the one hand and into a 2D finite element software on the other hand. Model results reveals the great influence of porosity and near-ground processes in permafrost evolution, and illustrates the possible persistence of a permafrost core into the slope.


2021 ◽  
Vol 57 (5) ◽  
pp. 614-626
Author(s):  
G. G. Kocharyan ◽  
A. N. Besedina ◽  
S. B. Kishkina ◽  
D. V. Pavlov ◽  
Z. Z. Sharafiev ◽  
...  

2002 ◽  
Vol 8 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Thomas C. Badger

Abstract Anticlinal folding generates both bedding-parallel shear stresses and tensional stresses radial to the fold axis. These stresses typically produce two sets of discontinuities. Discontinuity set S 1 forms coincident with bedding (S 0 ) as a mode II fracture, and discontinuity set S 2 forms perpendicular to bedding and strikes parallel to the fold axis as a mode I fracture. For slopes that strike parallel to the fold axis, these two discontinuity sets may produce three structurally-controlled modes of slope failure. For slopes that are coincident with bedding, planar failures along S 0 /S 1 commonly occur and can be very large. Where bedding dips favorably into the slope, failures along joint set S 2 and across bedding can occur. Toppling failures are common to both of these slope configurations, along S 2 and S 0 /S 1 , respectively. Lastly, flat or shallow dipping S 0 /S 1 fractures, even those favorably oriented, and intersecting S 2 joints define blocks that can be mobilized by high ground-water pressures. An example is presented for each slope configuration to illustrate these kinematic controls on slope stability.


2014 ◽  
Vol 501-504 ◽  
pp. 323-326
Author(s):  
Jian Xin Wang ◽  
Qi Liang Guo

Earthquake and subsequent rainfall infiltration always easily induced slope failure. The paper takes one slope as the studying example to assess the preliminary joint effect of earthquake disturbing and subsequent rainfall on slope failure. Based on the unsaturated infiltration theory, subsequent rainfall unsaturated seepage fields of un-disturbing and seismic slope were simulated separately. The results of earthquake disturbing slope compared with the initial one were discussed in detailed. The conclusion showed seismic slope is inclined to rainfall infiltration, which obviously increased the pore water pressure and induced rise of ground water.


Sign in / Sign up

Export Citation Format

Share Document