scholarly journals Investigation of Lower Palaeozoic rocks in northern East Greenland

1978 ◽  
Vol 90 ◽  
pp. 107-109
Author(s):  
P Frykman

Field work in 1977 was carried out primarily to collect rock samples for use in establishing a biozonation based on micro-fossils for the East Greenland Cambro-Ordovician sequence described by Cowie & Adams (1957). The most extensive sampling was done in the two type-sections of Cowie & Adams (1957) in Albert Heim Bjerge and Ella ø (fig. 35) in which macro-fossils are relatively sparse. In addition to this, an investigation was made of the virtuaIly unexplored C. H. Ostenfeld Nunatak in the Wordie Gletscher, from which Cowie & Adams (1957, p. 45) reported the presence of rocks belonging to the Hyolithus Creek Formation and the Cass Fjord Formation.

1981 ◽  
Vol 106 ◽  
pp. 95-98
Author(s):  
C Marcussen

The aim of the 1980 fjeld work was to extend the collection of orientated rock samples from North Greenland obtained in 1979 (Abrahamsen & Marcussen, 1980). The material consists of Upper Proterozoic to Lower Palaeozoic sediments as well as the presumed interglacial sediments at Kap København (Table 5). The two years' palaeomagnetic field work has resulted in anearly complete collection of orientated rock samples from all formations older than the Silurian flysch. The collection may be divided into six stratigraphical units (figs 28, 29).


Author(s):  
Brian Chadwick ◽  
Adam A. Garde ◽  
John Grocott ◽  
Ken J.W. McCaffrey ◽  
Mike A. Hamilton

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Chadwick, B., Garde, A. A., Grocott, J., McCaffrey, K. J., & Hamilton, M. A. (2000). Ketilidian structure and the rapakivi suite between Lindenow Fjord and Kap Farvel, South-East Greenland. Geology of Greenland Survey Bulletin, 186, 50-59. https://doi.org/10.34194/ggub.v186.5215 _______________ The southern tip of Greenland is underlain by the Palaeoproterozoic Ketilidian orogen (e.g. Chadwick & Garde 1996; Garde et al. 1998a). Field investigations in the summer of 1999 were focused on the structure of migmatites (metatexites) and garnetiferous granites (diatexites) of the Pelite Zone in the coastal region of South-East Greenland between Lindenow Fjord and Kap Farvel (Figs 1, 2). Here, we first address the tectonic evolution in the Pelite Zone in that region and its correlation with that in the Psammite Zone further north. Then, the structure and intrusive relationships of the rapakivi suite in the Pelite Zone are discussed, including particular reference to the interpretation of the controversial outcrop on Qernertoq (Figs 2, 8). Studies of the structure of the north-eastern part of the Julianehåb batholith around Qulleq were continued briefly from 1998 but are not addressed here (Fig. 1; Garde et al. 1999). The field study was keyed to an interpretation of the Ketilidian orogen as a whole, including controls of rates of thermal and tectonic processes in convergent settings. Earlier Survey field work (project SUPRASYD, 1992–1996) had as its principal target an evaluation of the economic potential of the orogen (Nielsen et al. 1993). Ensuing plate-tectonic studies were mainly funded in 1997–1998 by Danish research foundations and in 1999 by the Natural Environment Research Council, UK. The five-week programme in 1999 was seriously disrupted by bad weather, common in this part of Greenland, and our objectives were only just achieved. Telestation Prins Christian Sund was the base for our operations (Fig. 2), which were flown with a small helicopter (Hughes MD-500).


Author(s):  
Stefan Bernstein ◽  
C. Kent Brooks

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bernstein, S., & Brooks, C. K. (1998). Mantle xenoliths from Tertiary lavas and dykes on Ubekendt Ejland, West Greenland. Geology of Greenland Survey Bulletin, 180, 152-154. https://doi.org/10.34194/ggub.v180.5099 _______________ Mantle xenoliths were found in Tertiary alkaline (basanitic) lavas on Ubekendt Ejland in West Greenland in the mid 1970s by J.G. Larsen. Microprobe analyses of olivine, pyroxene and spinel in two mantle xenoliths, suggested that the xenoliths on Ubekendt Ejland are highly depleted and have high modal olivine contents, and low modal orthopyroxene and clinopyroxene (Larsen 1982). In this respect the mantle xenoliths from Ubekendt Ejland are very similar to the spinel harzburgites from Wiedemann Fjord, in the Tertiary volcanic province of East Greenland (Brooks & Rucklidge 1973; Bernstein et al. 1998). Larsen (1981) also reported dykes containing mantle nodules and a varied suite of cumulates and megacrysts, one of which has subsequently been dated to 34.1 ± 0.2 Ma (Storey et al. 1998) The basalt flow that carries the xenoliths is from what is defined as the Erqua Formation which occurs at the top of the lava succession in western Ubekendt Ejland (Fig. 1; Drever & Game 1948; Larsen 1977a, b). The basalts have not been dated, but are younger than 52.5 Ma, which is the date obtained for the underlying formation (Storey et al. 1998). During July 1997, we spent three weeks collecting xenoliths and prospecting for xenolith-bearing dykes in the Uummannaq district of central West Greenland. The field work resulted in an extensive collection of xenoliths from an alkaline basalt flow described by Larsen (1977a, b), as well as the discovery of a dyke carrying a large number of ultramafic xenoliths of various origins. 


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Author(s):  
Troels F.D. Nielsen ◽  
Henriette Hansen ◽  
C. Kent Brooks ◽  
Charles E. Lesher

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Nielsen, T. F., Hansen, H., Brooks, C. K., & Lesher, C. E. (2001). The East Greenland continental margin, the Prinsen af Wales Bjerge and new Skaergaard intrusion initiatives. Geology of Greenland Survey Bulletin, 189, 83-98. https://doi.org/10.34194/ggub.v189.5162 _______________ The rifted volcanic margin of East Greenland has remained a major area for field studies and the development of models for the dynamics of plume-related continental break-up since the start of the Danish Lithosphere Centre (DLC) in 1994. The studies cover a range of disciplines and geological processes from the early development of pre-break-up basin formation and sedimentation over the main phase of basaltic magmatism to the late stages of alkaline magmatism and structural re-equilibration. The East Greenland field activities in the summer of 2000, collectively referred to as EG 2000, were facilitated by a logistic platform provided by support from Statens Naturvidenskabelige Forskningsråd (SNF, the Danish Natural Science Research Council) and the Bureau of Minerals and Petroleum (BMP) in Nuuk, Greenland for the retrieval of 6 km of drillcore from the Skaergaard intrusion. During 1989 and 1990 mineral exploration had resulted in drilling of more than 15 km of core through the classic layered gabbros. The logistic platform also provided support for DLC and Geological Survey of Denmark and Greenland (GEUS) field work and projects throughout the Kangerlussuaq region and on the Blosseville Kyst (Fig. 1), as well as mineral exploration and petroleum company activities.


1989 ◽  
Vol 145 ◽  
pp. 103-108
Author(s):  
M.J Hambrey ◽  
J.S Peel ◽  
M.P Smith

The Caledonides of East Greenland contain the best exposures of Upper Riphean to Ordovician sediments in the Arctic - North Atlantic region. At its thickest the sequence contains 13 km of Eleonore Bay Group clastic sediments and carbonates, the 0.8 km thick Tillite Group and 3 km of Cambro-Ordovician strata (Henriksen & Higgins, 1976; Henriksen, 1985). These sediments crop out in a belt stretching for nearly 300 km through the fjord region, between 71° 38' and 74° 25'N. Those in the northern part of the region, between Brogetdal in Strindberg Land and southern Payer Land, and especiaIly Albert Heim Bjerge and C. H. Ostenfeld Nunatak, were the subject of investigation during 1988 (figs 1, 2).


1974 ◽  
Vol 65 ◽  
pp. 18-23
Author(s):  
J.S Peel ◽  
P.R Dawes ◽  
J.C Troelsen

The north-east 'corner' of Greenland is geologically probably the least known region in North Greenland. Various expeditions have visited the coastal parts but geological detail, particularly faunal information, has remained surprisingly scarce. Initial field work by Koch (1923, 1925) and Troelsen (1949a, b, 1950) showed that a Precambrian to Silurian section - unfolded in the south, folded in the north - was unconformably overlain by a Carboniferous to Tertiary section, now referred to as the Wandel Sea basin (Dawes & Soper, 1973).


1981 ◽  
Vol 104 ◽  
pp. 5-46
Author(s):  
A.K Higgins ◽  
J.D Friderichsen ◽  
T Thyrsted

Results are presented of regional geological reconnaissance and local detailed studies. The new fjeld work, together with isotopic studies, has made possibie a provisional reassignment of metamorphic, plutonic and deformational events recorded in the different rock units to Archaean and Proterozoic, as well as Caledonian, orogenic episodes. The infracrustal elements of the 'central metamorphic complex' are considered to be essentiaIly Archaean - early Proterozoic basement gneiss complexes, and are overlain by middle Proterozoic metasedimentary sequences. The late Proterozoic and Lower Palaeozoic sediments have arestricted outcrop at present levels of exposure. During the Caledonian orogeny the late Proterozoic cover sequences appear to have become detatched from their older metamorphic 'basernent' along a decollement surface, but the nature of this contact is usually obscured by Caledonian metamorphic effects. The main characteristics of the different rock units are described. Detailed relationships are illustrated by studies of four areas: Nunatakgletscher-Eremitdal, Knækdalen and adjacent areas, Kap Hediund, and Tærskeldal-Forsblads Fjord-Randenæs.


1987 ◽  
Vol 135 ◽  
pp. 72-81
Author(s):  
C Marcussen ◽  
F.G Christiansen ◽  
P.-H Larsen ◽  
H Olsen ◽  
S Piasecki ◽  
...  

A study of the onshore hydrocarbon potential of central and northem East Greenland was initiated in 1986. Field work was carried out from early July to mid August covering the region between Kong Oscar Fjord and Kejser Franz Joseph Fjord (fig. 1). In 1987 field activities will continue further to the north, eventually reaching Danmarkshavn (77°N). The programme is a continuation of the 1982-83 investigations in Jameson Land (Surlyk, 1983; Surlyk et al., 1984a) and is part of a regional programme comprising petroleum geological studies of all sedimentary basins in Greenland (Larsen & Marcussen, 1985; Larsen, 1986). The aim of the two-year field study followed by laboratory analyses is: (1) to study the presence and distribution of potential hydrocarbon source rocks in the region; (2) to evaluate the thermal history and maturity pattern of the region including the thermal effect of Tertiary intrusions and volcanics; (3) to make a stratigraphic, sedimentological and tectonic study of the region with special emphasis on subsidence history, reservoir formation and potential hydrocarbon traps.


1989 ◽  
Vol 145 ◽  
pp. 84-87
Author(s):  
L Stemmerik ◽  
P.A Scholle ◽  
E Thomas ◽  
M Amendolia ◽  
F.H Henk ◽  
...  

Field work was carried out from 17 July to 3 August by a joint group from ARCO, AGIP and GGU to evaluate the reservoir potential of the Upper Permian limestones in Wegener Halvø (fig. 1). The group was based south of Paradigmabjerg (fig. 1) and had a Bell 206 helicopter available tull-time during the entire period. Logistic support was provided by the ARCO base at Constable Pynt. The Upper Permian limestones in the Wegener Halvø area have been investigated previously by GGU (Stemmerik, 1979; Surlyk, 1983; Surlyk et al., 1984a,b, 1986a; Hurst et al., 1989). Diagenetic studies of the limestones (Scholle, 1986; Hurst et al., 1989) indicate that reservoir properties are expected mainly to occur in the bryozoan-cement mounds of the Wegener Halvø Formation. Accordingly, the 1988 programme concentrated on more detailed studies of these mounds and included a shallow drilling programme conducted by GGU (see Christiansen & Stemmerik, 1989).


Sign in / Sign up

Export Citation Format

Share Document