Evaluating direct and strategic placement of dredged material for marsh restoration through model simulations

Shore & Beach ◽  
2021 ◽  
pp. 33-40
Author(s):  
Samuel Zapp ◽  
Giulio Mariotti

Dredged material can be used for marsh restoration by depositing it on the marsh surface (thin-layer placement), by releasing it at the mouth of channels and allowing tidal currents to transport it onto the marsh platform (channel seeding), or by creating new marshes over shallow areas of open water. We investigate the efficacy of these different methods using a comprehensive 2D marsh evolution model that simulates tidal dynamics, vegetation processes, bank and wave erosion, and ponding. Total marsh area is assessed over 50 years in an idealized microtidal marsh under different relative sea level rise (RSLR) scenarios. For a given volume of total sediment added, the frequency of deposition is relatively unimportant in maximizing total marsh area, but the spatial allocation of the dredged material is crucial. For a given volume of sediment, thin-layer deposition is most effective at preserving total marsh area, especially at high rates of RSLR. Channel seeding is less efficient, but it could still provide benefits if larger amounts of sediment are deposited every 1-2 years. Marsh creation is also beneficial, because it not only increases the marsh area, but additionally slows the erosion of the existing marsh. The 2D model is highly computationally efficient and thus suited to explore many scenarios when evaluating a restoration project. Coupling the model with a cost assessment of the different restoration techniques would provide a tool to optimize marsh restoration.

Author(s):  
Sungho Park ◽  
Byung Jun Kim ◽  
Tae Yeon Kim ◽  
Eui Young Jung ◽  
Kyu-Myung Lee ◽  
...  

We have developed a visible-light phototransistor with excellent photodetection characteristics and stability via atomic layer deposition (ALD) to add a thin layer of aluminum oxide (Al2O3) to quantum dot (QD)/zinc oxide (ZnO) films.


2019 ◽  
Vol 10 (2) ◽  
pp. 129-134
Author(s):  
Wijono ◽  
Bob Alvin Sidabutar ◽  
Waru Djuriatno

One of the ways to improve the quality of the material is by using the thin layer deposition techniques on the material surface. DC magnetron sputtering is one of the methods frequently used to do so. This method uses plasma to create a thin layer on the material's surface. In this research, flyback circuit is used to generate plasma. This research examines the effects of electrodes’ gap and sputtering process time on the width of marks that appear on the substrate’s surface. The electrodes’ gap varies in range of 1, 2, 3, and 4 cm, whereas the sputtering process time varies in range of 36, 72, 108, 144, and 180 minutes. The substrate used in this research is iron and the coating materials used are aluminium and copper. This research uses plate-shaped electrodes in the coating process. The sputtering process resulted in the appearance of marks on the substrate’s surface. The marks were compared qualitatively with every gap range of electrodes, sputtering process time, and the coating material used. Next, they were categorized into 6 groups according to the thickness of the marks’ layer in order to obtain quantitative data which were then made into graphics. The results of this research show that silver coating material takes the shortest time to coat iron substrate, which is 36 minutes. In 36 minutes, the marks produced by silver coating fall under the group with the highest marks, compared to other coating materials. This research also shows that alteration of the electrodes' gap will affect the voltage of electrodes and the coating’s thickness groups. The further the gap between the electrodes, the higher the electrodes’ voltage and the coating’s thickness groups will be.


Sign in / Sign up

Export Citation Format

Share Document